基于全卷积回归网络的图像去雾算法

张泽浩,周卫星*

华南师范大学物理与电信工程学院,广东广州 510006

摘要 针对当前去雾算法经常出现过度曝光、颜色失真等问题,提出了一种基于全卷积回归网络的去雾算法。该回 归网络基于端到端系统,由特征提取和特征融合两部分构成。首先,输入有雾图像,经过特征提取和特征融合,最终 回归为粗透射率图;之后使用导向滤波对其进行优化,再利用大气物理散射模型反演出无雾图像;最终采用限制对比 度自适应直方图均衡化(CLAHE)对无雾图像进行增强,以得到更符合人类视觉的清晰图像。所提算法不仅可以有效 避免去雾后出现的过度曝光和颜色失真等问题,而且能保留图像完整的细节信息,具有较好的去雾效果。 关键词 图像处理;图像去雾算法;卷积神经网络;端到端;限制对比度自适应直方图均衡化 中图分类号 TP391.4 文献标识码 A doi: 10.3788/LOP56.201003

Image Dehazing Algorithm Based on Full Convolution Regression Network

Zhang Zehao, Zhou Weixing*

School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006, China

Abstract Herein, a dehazing algorithm based on a full convolution regression network is proposed to solve the overexposure and color distortions caused by current dehazing algorithms. The regression network is based on an end-to-end system and comprises two parts, feature extraction and feature fusion, to which a foggy image is first subjected, then regressed into a coarse transmittance map and optimized by the guide filter. The atmospheric physical scattering model is used to invert a fog-free image , which is then enhanced via contrast limit adaptive histogram equalization (CLAHE) to obtain a clear image that is more suitable to human vision. The proposed algorithm can avoid problems such as overexposure and color distortion post dehazing, retain complete details, and provide a better dehazing effect.

Key words image processing; image dehazing algorithm; convolutional neural network; end-to-end; contrast limit adaptive histogram equalization

OCIS codes 100.2000; 100.2980; 280.1310; 200.4260

1 引 言

在雾霾等恶劣天气环境下,大气中的微小颗粒 会对光线产生散射作用,导致捕获的室外图像出现 可见性差和对比度低等问题,这不仅对人类感知产 生了负面影响,而且还对许多计算机视觉任务构成 了障碍^[1],如视频监控、目标识别、图像分类等。因 此,为改善图像质量,提高计算机视觉系统性能,有 雾图像清晰化已成为当前计算机视觉的重要研究 课题。

近年来,基于雾天图像复原的算法研究取得了 重大突破。Fattal等^[2]通过估计场景的反射率和介 质传输率来进行去雾,但由于浓雾时获得的图像缺 乏色彩对比,经常出现去雾失效。Tan^[3]提出了一 种局部对比度最大化的算法,采取提高图像的视觉 效果以达到去雾的目的,但易出现颜色失真。经过

收稿日期: 2019-04-09; 修回日期: 2019-04-18; 录用日期: 2019-04-25

基金项目: 广东省省级科技计划项目(2016A010101021)

观察,He等^[4]发现在晴朗的室外图像中,除了天空 区域,其他像素点都会有一个具有很低的值的颜色通 道,由此提出了一种暗通道先验去雾算法,但在天空 区域和其他不满足暗通道先验的区域会出现颜色失 真现象,并且通过软抠图进行透射率细化时间,复杂 度过高。Meng等^[5]根据大气散射模型的特点提出了 一种利用边界约束的去雾算法。Berman等^[6]发现一 张清晰的图像可以近似为几百种颜色的逼近,以此为 基础,对有雾图像建立一条雾线,并根据这条雾线估 计透射率来实现去雾的目的。Zhu等^[7]假设有雾图 像中雾的浓度与亮度和饱和度的差成正比,由此建立 模型,估计图像的深度信息进行图像去雾。

目前,深度学习的应用范围越来越广,并在人脸 检测^[8]、图像分割^[9]和图像分类^[10]等方面取得了巨 大成就。同时,部分学者也已将深度学习理论应用 到了图像去雾领域,并取得了显著的效果。例如 Cai等^[11]提出的端到端卷积神经网络(CNN)^[12],采 用新型的 BReLU 单元进行归一化传输,根据雾天 图像的训练预测出透射率。Li等^[13]提出了一种一 体化去雾网络,利用线性变换将透射率和大气光编 码成一个变量,提高了去雾效率。

综上所述,为提高去雾性能,本文提出了一种全 卷积回归网络,该网络是基于 CNN 的端到端系统, 采用有雾图像作为输入,最终回归为相应的透射率 图,随后使用大气散射模型进行图像去雾。

2 大气物理散射模型

大气物理散射模型经过 Narasimhan 等^[14]改进 后,被广泛应用于计算机图形领域中,该模型描述了 雾天图像的形成过程,即

I(x,y) = t(x,y)J(x,y) + A[1-t(x,y)],

式中:*I*(*x*,*y*)为捕获到的有雾图像;*J*(*x*,*y*)为去雾 后的清晰图像;*A*为大气光值;*t*(*x*,*y*)为图像透射 率图,其可定义为

$$f(x,y) = \exp\left[-bd\left(x,y\right)\right], \qquad (2)$$

式中:b 为大气的散射系数;d(x,y)为物体与相机 等成像设备间的距离。由上述可知,图像去雾过程 是先从有雾图像 I 中估计出透射率图和大气光值, 而后再根据(1)式反演出无雾图像 J,因此,对透射 率图和大气光值的估计是图像去雾的关键。

3 所提算法

本研究提出的基于全卷积回归网络的单幅图像 去雾算法步骤如下:

 1)输入有雾图像,使用全卷积回归网络得到透 射率图;

2)使用导向滤波对透射率图进行细化,同时利用原有雾图像估计大气光值;

 3)根据得到的细透射率图和大气光值,使用大 气物理散射模型得到无雾图像;

4)使用限制对比度自适应直方图均衡化(CLAHE)对无雾图像进行直方图均衡化,还原出符合人正常视觉效果的清晰图像。

3.1 全卷积网络结构

所提出的全卷积回归网络是基于 CNN 的端到 端系统,其将有雾图像作为输入,最终回归为相应的 透射率图。全卷积回归网络主要由两部分组成:特 征提取和特征融合。特征提取中使用多尺度卷积 核,并利用最大池化缩小特征图。特征融合中使用 反卷积放大特征图为原尺寸,并结合多尺度和单尺 度卷积核对特征图进行处理,以融合不同级别的特 征,来达到准确估计透射率图的目的。具体网络结 构如图 1 所示。

(1)

图 1 中①箭头表示该过程由卷积层、线性单元 ReLU 和批标准化(Bath Normalization, BN)组成; ②箭头表示该过程由卷积层、最大池化层、线性单元 ReLU和BN组成;③箭头表示该过程由反卷积层、 线性单元 ReLU 和 BN 组成。

3.2 特征提取

将有雾图像作为输入,首先需采用 3×3、5×5、 7×7 这三个不同尺度卷积核对输入图像进行初步 特征提取,与文献[11]不同,所提算法是对原始有雾 图像进行多尺度特征提取,其目的是为了防止细节 信息的丢失,卷积的计算公式为

$$\boldsymbol{G}_{li}(x) = \boldsymbol{w}_{li} * \boldsymbol{F}_{l-1}, \qquad (3)$$

式中: w_i 为第 l 卷积层的第 i 组卷积核: F_{l-1} 为第 l-1 层输出的特征图; G_i 为第 l 层输出的第 i 组特 征图;*为卷积操作。在每个卷积后额外使用 BN 进行归一化处理,不仅可使数据分布更符合其真实 分布,还可防止过拟合,加速网络收敛。使用 concat 层将上述三个尺度的相关特征进行合并,合并后再 使用单尺度 9×9 卷积核进行特征提取,捕获尺度相 对较大的轮廓信息,后接线性单元 ReLU 作为激活 函数。相比于其他的激活函数, ReLU 的特点是具 有负方向抑制,网络收敛,且不会出现梯度消失问 题。因为池化层可以简化运算,抑制噪声的产生,所 以本研究采用最大池化进行采样,并将特征图缩小 到1/4,以便再次进行多尺度卷积,提取不同尺度的 细节信息。第2个多尺度卷积层中各卷积核的大小 与之前相同,不同的是在每一个卷积后都增加了一 个最大池化,并将特征图缩小到了 1/16,以此来保 留更多的特征,在对特征图进行合并时,采用 Eltwise 层的求和操作代替 concat 层,目的是为了 提高精度,保留完整的特征信息透射率图。

3.3 特征融合

在特征提取过程中,用于抑制噪声和提取细节信息的最大池化将特征图缩小到了1/16。为了还原特征图尺寸,受Laina等^[15]网络中向上投影块的启发(此网络旨在提高特征图的空间分辨率),采用了与文献[15]类似的向上投影块,并利用反卷积层而非反池化层实现进一步改进,究其原因是反池化层输出的激活映射被放大而稀疏,而反卷积层可以生成具有更精细图形结构且密集的激活映射,并且有利于融合不同级别的特征。 在第1个反卷积之后再次使用多尺度5×5和7×7卷积核进行局样操作,而后分别使用3×3和5×5卷积核进行同样操作,最后再采用Eltwise层进行特征融合。在第2个反卷积层之后进行类似上述操作,最终得到透射率图。

3.4 网络训练

对于 CNN 而言,每个网络模型的训练都需要

大量的训练样本,因此,对于去雾神经网络,想要获 得同一场景下的清晰图像和有雾图像是一件极其困 难的事情,故而选择人工合成的有雾图像作为训练 样本。在合成有雾图像时要基于两个规则:1)需把 大图像分割成多个 32 pixel×32 pixel 的图像块,并 默认每个图像块中的像素具有相同的深度;2)每个 图像块的透射率图是随机产生的,大气光值固定为 0.9,利用(1)式可合成有雾图像。

为估计出更为准确的透射率图,本研究的 CNN 在训练时采用 caff 框架,学习率为 0.001,权重衰减 项为 0.0005,训练样本为 120000 张图像块,最大迭 代次数为 500000。

3.5 透射率优化

为使透射率图保留更多细节,边缘更加平滑,需 对全卷积神经网络模型得到的透射率图进行优化。 采用导向滤波^[16]优化透射率图,其特点为该方法与 滤波器的窗口大小无关,且相对于软抠图时间复杂 度较低,效果较好。滤波模型可定义为

$$q = \sum w M p , \qquad (4)$$

式中:w 为窗口大小;M 为引导图,即所要达到的目标图像;p 为原图像;q 为输出图像。当使用导向滤波时,函数模型可定义为

 $q(x,y) = a_k M_{(x,y)} + b_k, \forall (x,y) \in w_k, (5)$ 式中:k 为窗口w的中心像素点,(x,y)为像素点的 坐标位置;q 为输出图像,即优化后的透射率图; a_k 和 b_k 为窗口 w_k 中的常数系数,可定义为

$$E(a_k, b_k) = \sum \left\{ \left[a_k M_{(x,y)} + b_k - p_{(x,y)} \right]^2 + \varepsilon a_k^2 \right\},$$
(6)

式中: ϵ 为正则化参数; $E(a_k, b_k)$ 为代价函数。为防 μ_{a_k} 过大,使用线性回归,得

$$a_{k} = \frac{\frac{1}{w} \sum_{(x,y) \in w_{k}} M_{(x,y)} - p_{(x,y)} - u_{k} \bar{p}_{k}}{\sigma_{k}^{2} + \varepsilon}, \quad (7)$$

$$b_k = \bar{p}_k - a_k u_k , \qquad (8)$$

式中: u_k 和 σ_k^2 分别为图像 M中当前 w_k 窗口内常数系数的平均值和方差; \bar{p}_k 为窗口中p的平均值。 包含像素(x,y)的窗口不止一个,因此,需计算窗口 内 a_k 和 b_k 的均值,即

$$q_{(x,y)} = \frac{1}{w} \sum_{k \in w_k} [a_k M_{(x,y)} + b_k]_{\circ}$$
(9)

导向滤波的本质是对图像中各邻域范围内和 的运算,目前在计算机视觉领域已经得到了广泛 应用。

3.6 大气光估计

在对大气光进行估计时,大多数学者选取的是 He等的方法,即选取有雾图像中前1%的亮度像素 点,并求取该像素点的亮度均值作为大气光值,但当 有雾图像中出现天空区域或大面积亮度较高区域 时,该方法易失效,且去雾后的图像易出现颜色失 真。针对上述问题,利用有雾图像中像素的亮度值 和相对位置,结合基于天空区域在图像上方的假设 来完成估计,即像素点相对位置越高,该像素点位于 图像中天空区域的概率越大。首先,定义图像中每 个像素点的相对高度为 H(x,y),亮度值为 V(x,y),相对高度值与亮度值的乘积定义为使用该 点估计大气光值的概率 P(x,y),即

P(x,y) = H(x,y)V(x,y), (10) 最终采用概率值前 1%的像素点估计大气光值 A,即

$$A = \frac{\sum V(x, y)}{N},\tag{11}$$

式中:N 为概率值前 1%像素点的个数;V(x,y)为 这些像素点的亮度值。图 2 为 He 算法与所提算法 在选取估计大气光值像素点时的对比图,其中红色 像素部分为两种算法用来估计大气光值选取的像素 点,由图可知本研究采用的算法更为合理。

图 2 两种算法选取估计大气光值的像素点的对比图。 (a) He 算法;(b)所提算法

Fig. 2 Comparison of two algorithms to estimate the pixel points of atmospheric light values. (a) He algorithm; (b) proposed algorithm

3.7 CLAHE

CLAHE与普通的自适应直方图均衡(AHE)

不同的地方主要在于其对比度限制^[17],普通自适应 直方图均衡倾向于过度简化图像的近恒定区域中的 对比度,但这些区域中的直方图是高度集中的,可能 导致图像中的噪声在近恒定区域中被放大,而在 CLAHE中,对于图像中每一个小区域都必须使用 对比度限幅,以便减少噪声放大等问题。

在 CLAHE 中,给定像素值附近的对比度放大 是由变换函数的斜率给出的,这与邻域累计分布函 数(CDF)^[18]的斜率成比例,因此,也与该像素值直 方图的值成比例。CLAHE 在计算 CDF 之前,就将 直方图剪切为预定值来限制放大。这不仅限制了 CDF 的斜率,还限制了变换函数的斜率。剪辑限制 即裁剪直方图的值,取决于直方图的归一化,也就是 邻域的大小,可将超出剪辑限制的部分均匀地分布 到直方图的其他部分,如图 3 所示。

图 3(a)为裁剪示意图,对超出裁剪值的部分进 行裁剪,并将裁剪部分分配到直方图底层,分配之后 会出现新的超出裁剪值的区域,如图 3(b)绿色区域 所示,本文采用递归的方法重复分配过程,直到超出 裁剪值区域可忽略不计。

图 3 CLAHE 裁剪分配示意图。(a)裁剪示意图; (b)分配示意图

Fig. 3 Diagrams of CLAHE cutting allocation.(a) Cropping diagram; (b) distribution diagram

由图 4 可知,经过 CLAHE 处理的图像更为鲜 艳且更加符合人眼视觉感受。虽然经过全卷积回归 网络去雾后的图像已经达到了很好的去雾效果,但 整体有些偏暗,再经过 CLAHE 提高对比度后,图 像质量得到显著提高。

图 4 CLAHE 处理前后对比图。(a)原有雾图像;(b)全卷积回归网络去雾后图像;(c)经 CLAHE 处理后图像 Fig. 4 Comparison before and after CLAHE processing. (a) Original foggy image; (b) dehazing image Based on fully convolutional regression network; (c) image after CLAHE processing

4 实验结果与分析

4.1 透射率图对比实验

本研究利用全卷积网络得到粗透射率图,再利 用导向滤波进行优化。为验证所提算法的透射率, 选取火车图片,并放大部分细节,如图 5 所示。由图 可知,He和Berman算法求得的透射率图细节丢失 严重,尤其是放大部分,几乎看不到任何细节。Cai 算法虽然可以看到部分细节,但对比度较低。Meng 算法则由于对比度过高,出现了部分失真。相比较 而言,利用所提算法得到的透射率图更为清晰,且可 展现出更多的细节。

图 5 不同算法透射率对比图。(a)原有雾图像;(b) He 算法^[4];(c) Meng 算法^[5];(d) Berman 算法^[6];(e) Cai 算法^[11];(f)所提算法 Fig. 5 Comparison of transmittance of different algorithms. (a) Original foggy image; (b) He algorithm^[4]; (c) Meng algorithm^[5]; (d) Berman algorithm^[6]; (e) Cai algorithm^[11]; (f) proposed algorithm

4.2 合成有雾图像对比实验

为验证所提算法在合成有雾图像中的效果,从数据集 Middlebury Stereo Dataset 中选取图像

Cloth、Midd 和 Monopoly 及其深度图,利用(1)式 和(2)式合成有雾图像,并将所提算法与其他去雾算 法进行实验对比,其结果如图 6~8 所示。

图 6 合成雾图像 Cloth 去雾结果对比。(a)原清晰图像;(b)加雾后图像;(c) Fattal 算法;(d) He 算法; (e) Meng 算法;(f) Berman 算法;(g) Cai 算法;(h)所提算法

Fig. 6 Comparison of dehazing results of synthetic fog image Cloth. (a) Original clear image; (b) foggy image; (c) Fattal algorithm; (d) He algorithm; (e) Meng algorithm; (f) Berman algorithm; (g) Cai algorithm; (h) proposed algorithm

由图 6~8 可知,Fattal 算法在处理合成雾图像 时总会出现过度曝光和颜色失真等现象,从而导致 图像丢失信息,未达到去雾的目的。He 算法在图 像亮度较高部分出现了过度曝光现象。Meng 算法 尽管保留了大部分细节信息,但与原无雾图像相比, 颜色失真现象较为严重。若雾图像包含好亮度背景 时,Berman 算法就会降低背景亮度,导致背景偏暗,与原无雾图像相差较大。Cai 算法则易降低图 像整体亮度,导致图像丢失部分细节信息。对比发现,所提算法的去雾图像在视觉效果上要明显优于 其他算法,且保留的信息完整,与原无雾图像非常 接近。

图 7 合成雾图像 Midd 去雾结果对比。(a)原清晰图像;(b)加雾后图像;(c) Fattal 算法;(d) He 算法; (e) Meng 算法;(f) Berman 算法;(g) Cai 算法;(h)所提算法

Fig. 7 Comparison of defogging results of synthetic fog image Midd. (a) Original clear image; (b) foggy image; (c) Fattal algorithm; (d) He algorithm; (e) Meng algorithm; (f) Berman algorithm; (g) Cai algorithm; (h) proposed algorithm

图 8 合成雾图像 Monopoly 去雾结果对比。(a)原清晰图像;(b)加雾后图像;(c) Fattal 算法;(d) He 算法; (e) Meng 算法;(f) Berman 算法;(g) Cai 算法;(h)所提算法

Fig. 8 Comparison of defogging results of synthetic fog image Monopoly. (a) Original clear image; (b) foggy image;(c) Fattal algorithm; (d) He algorithm; (e) Meng algorithm; (f) Berman algorithm; (g) Cai algorithm;(h) proposed algorithm

为了客观评价各算法的去雾性能,选取平均梯度(Average gradient)、信息熵(Entropy)、结构相似度(SSIM)、峰值信噪比(PSNR)、特征相似度

(FSIM)、光谱残差指数(SRSIM),以及通用质量指数(UQI),总计7种图像质量评价指标对各算法的去雾图像进行对比,其结果如表1~3所示。

	表 1	针对合用	戓图像 Cl	oth	的不同算	其法去雾后	5指标评价			
Table 1	Evaluation	indicators	obtained	by	different	dehazing	algorithms	for	image	Cloth

			Evalua	tion indicator			
Algorithm	Average gradient	Entropy	SSIM	PSNR	FSIM	SRSIM	UQI
Fattal	2.5516	3.857	0.24	7.1292	0.6817	0.7978	0,7285
He	7.7796	7.45	0.6873	16.4184	0.742	0.8435	0.9715
Meng	9.1826	7.2259	0.6161	15.425	0.8576	0.9085	0.978
Berman	8.5153	7.7348	0.8901	20.2225	0.9089	0.9296	0.9758
Cai	9.0145	7.3103	0.5525	11.6161	0.7423	0.8111	0.6335
Proposed	8.3687	7.8438	0.6778	16.5031	0.7506	0.8762	0.9726

表 2 针对合成图像 Midd 的不同算法去雾后指标评价

Table 2 Evaluation indicators obtained by different dehazing algorithms for image Midd

Algorithm	Evaluation indicator						
	Average gradient	Entropy	SSIM	PSNR	FSIM	SRSIM	UQI
Fattal	1.7776	2.6969	0.1236	8.0984	0.7473	0.7946	0.772
He	4.908	7.531	0.6935	17.9008	0.759	0.8416	0.9709
Meng	5.8656	6.5501	0.4435	15.3477	0.8586	0.9201	0.9517
Berman	4.9005	7.4684	0.7839	17.2871	0.9111	0.9293	0.9246
Cai	5.1499	7.2368	0.6708	15.4346	0.8087	0.8302	0.8237
Proposed	4.8762	7.3132	0.7359	16.2309	0.7578	0.8387	0.9332

表 3 针对合成图像 Monopoly 的不同算法去雾后指标评价

Table 3 Evaluation indicators obtained by different dehazing algorithms for image Monopoly

Algorithm	Evaluation indicator						
	Average gradient	Entropy	SSIM	PSNR	FSIM	SRSIM	UQI
Fattal	1.657	2.9267	0.2107	9.3993	0.7784	0.8844	0.8639
He	6.908	7.38	0.6735	17.5173	0.6817	0.7969	0.988
Meng	8.2415	6.8548	0.647	17.5667	0.8393	0.8937	0.9842
Berman	7.2754	7.4109	0.341	20.302	0.8673	0.9168	0.9848
Cai	8.6848	7.5398	0.5224	11.6791	0.7392	0.7892	0.7994
Ours	6.7025	7.4202	0.6883	17.75	0.6701	0.8014	0.9861

由表 1~3 可知,与其他算法相比,所提算法更 接近于原始无雾图像,并且去雾后图像的对比度和 细节还原度都相对较高。同时,相比于 Cai 算法,所 提算法在客观数据上也表现得更加优异。

4.3 真实有雾图像对比实验

为测试所提算法在真实有雾图像中的效果,选 用很多去雾研究中所用到的几幅有雾图像,并将所 提算法与其他去雾算法进行实验对比,其结果如 图 9~11 所示。

图 9 有雾图像麦田的去雾结果对比。(a)原有雾图像;(b) Fattal 算法;(c) He 算法;(d) Meng 算法; (e) Berman 算法;(f) Cai 算法;(g)本文算法

Fig. 9 Comparison of dehazing results of fog image (wheat field). (a) Original foggy image; (b) Fattal algorithm;(c) He algorithm; (d) Meng algorithm; (e) Berman algorithm; (f) Cai algorithm; (g) proposed algorithm

由图 9~11 可知,经 Fattal 算法去雾后图像出 现了严重的颜色失真,如图 11 中火车的去雾图像, 画面几乎全部失真,并伴有严重的曝光现象。He 算法虽有一定的去雾效果,但去雾不彻底,去雾后图 像中仍存在大量的雾霾,且图像细节不明显。Meng 去雾算法有时会出现部分图像曝光现象,如图 10 中 图像上部和图 11 中的图像左上角部位。Berman 算 法则可能会出现部分失真现象,如图 9 中图像上部。

Cai 算法处理后的图像相对偏暗,导致部分图像细 节不清晰。而经所提算法处理后的无雾图像,其细 节清晰,对比度强,符合人眼视觉效果,但有时也会 出现一些光晕现象,如图 11 中的火车车灯处,这也 是今后的研究中需要改进的方向。

为进一步验证所提算法在真实有雾图像中的有 效性,选取平均梯度和信息熵两种客观图像质量评 价指标对去雾后的图像进行评价,如图 12 所示。

图 10 有雾图像村庄的去雾结果对比。(a)原有雾图像;(b) Fattal 算法;(c) He 算法;(d) Meng 算法; (e) Berman 算法;(f) Cai 算法;(g)本文算法

Fig. 10 Comparison of dehazing results of fog images (village). (a) Original foggy image; (b) Fattal algorithm;(c) He algorithm; (d) Meng algorithm; (e) Berman algorithm; (f) Cai algorithm; (g) proposed algorithm

图 11 有雾图像火车的去雾结果对比。(a)原有雾图像;(b) Fattal 算法;(c) He 算法;(d) Meng 算法; (e) Berman 算法;(f) Cai 算法;(g)本文算法

Fig. 11 Comparison of defogging results of fog images (train). (a) Original foggy image; (b) Fattal algorithm;(c) He algorithm; (d) Meng algorithm; (e) Berman algorithm; (f) Cai algorithm; (g) proposed algorithm

图 12 不同算法的平均梯度和信息熵结果对比。(a)平均梯度;(b)信息熵

Fig. 12 Comparison of average gradient and information entropy for different algorithms. (a) Average gradient; (b) information entropy

为验证所提算法的广泛应用性,选取从网上 收集的100张真实有雾图像作为数据集,利用平 均梯度和信息熵作为评价指标,对各算法去雾后 的图像进行验证,得到各指标的平均值,如图13 所示。

如图 12 和图 13 所示,相对于其他算法和原始 有雾图像,经所提算法处理过的还原图像平均梯度 和信息熵都较高,即表明所提算法在处理真实场景 的有雾图像方面效果较好,还原细节较多,并且还具 有较高的清晰度。

由图像的去雾对比和主、客观评价可知,所提算 法还原出的图像更符合人类的视觉感官,且其对比 度和清晰度均优于其他去雾算法。

通过与其他网络模型的对比分析来验证所提全 卷积网络模型特征融合效果。对比模型1去除了池 化层和反卷积模块,并改用正常卷积,如图14所示。 对比模型2在去除了池化层和反卷积模块后, 使用单尺度进行特征学习,如图15所示。不同网

图 13 100 张真实有雾图像经不同算法的平均 梯度和信息熵结果对比

Fig. 13 Comparison of average gradient and information entropy of different algorithms for 100 real foggy images

络模型的信息熵结果如表 4 所示,表中数据显示:相 对于对比模型,所提提出的全卷积网络模型的信息 熵得到了显著提升。

图 15 对比模型 2

Fig. 15 Compared model 2

表 4 不同网络模型的信息熵结果对比

 Table 4
 Comparison of information entropy

 of different network models

	Entropy					
Image	Compared	Compared	Ours			
	model 1	model 2				
Wheat field	6.67	7.01	7.48			
Village	6.90	7.19	7.67			
Train	6.34	6.89	7.29			

由对比模型1和2可知,相对于单尺度,采用多 尺度进行特征学习,对信息熵有明显的提升效果。 同样地,采用反卷积进行特征融合,对信息熵也有提 升效果。

5 结 论

针对目前大多数去雾算法存在的颜色失真和去 雾不彻底等问题,提出了一种基于全卷积回归网络 的图像去雾算法。该网络设计充分利用了有雾图像 和透射率的关系,采用端到端系统进行特征提取和 融合,并利用 CLAHE 还原出了更加符合人类视觉 的清晰图像。相对于其他算法,所提算法在主观效 果和客观评价上都具有一定的优势,并可应用于实 际情况当中。后续研究主要是设计更有效的网络模 型,以达到更优的效果。

参考文献

- [1] Liu G, Lü Q B, Liu Y Y. Single image dehazing algorithm based on adaptive dark channel prior [J]. Acta Photonica Sinica, 2018, 47(2): 0210001.
 刘国,吕群波,刘扬阳.基于自适应暗原色的单幅图 像去雾算法[J].光子学报,2018,47(2): 0210001.
- [2] Fattal R. Single image dehazing [J]. ACM Transactions on Graphics, 2008, 27(3): 721-728.
- [3] Tan R T. Visibility in bad weather from a single image [C] // 2008 IEEE Conference on Computer Vision and Pattern Recognition, June 23-28, 2008, Anchorage, AK, USA. New York: IEEE, 2008: 10139948.
- [4] He K M, Sun J, Tang X O. Single image haze removal using dark channel prior [C] // 2009 IEEE Conference on Computer Vision and Pattern Recognition, June 20-25, 2009, Miami, FL, USA. New York: IEEE, 2009: 1956-1963.
- [5] Meng G F, Wang Y, Duan J Y, et al. Efficient image dehazing with boundary constraint and contextual regularization [C] // 2013 IEEE International Conference on Computer Vision, December 1-8, 2013, Sydney, NSW, Australia. New York: IEEE, 2013: 14144884.
- [6] Berman D, Treibitz T, Avidan S. Non-local image dehazing [C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27-30, 2016, Las Vegas, NV, USA. New York: IEEE, 2016: 1674-1682.
- Zhu Q S, Mai J M, Shao L. A fast single image haze removal algorithm using color attenuation prior [J].
 IEEE Transactions on Image Processing, 2015, 24 (11): 3522-3533.
- [8] Zhang K P, Zhang Z P, Li Z F, et al. Joint face detection and alignment using multitask cascaded convolutional networks [J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
- [9] Shelhamer E, Long J, Darrell T. Fully convolutional

networks for semantic segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.

- [10] Yu Y H, Lin H F, Meng J N, et al. Deep transfer learning for modality classification of medical images
 [J]. Information, 2017, 8(3): 91.
- Cai B L, Xu X M, Jia K, et al. DehazeNet: an endto-end system for single image haze removal [J].
 IEEE Transactions on Image Processing, 2016, 25 (11): 5187-5198.
- [12] Zhou F Y, Jin L P, Dong J. Review of convolutional neural network [J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251.
 周飞燕,金林鹏,董军.卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251.
- Li Z W, Tan P, Tan R T, et al. Simultaneous video defogging and stereo reconstruction [C] // 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 7-12, 2015, Boston, MA, USA. New York: IEEE, 2015: 4988-4997.
- [14] Narasimhan S G, Nayar S K. Chromatic framework for vision in bad weather [C] // IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 15, 2000, Hilton Head Island, SC, USA. New York: IEEE, 2002: 598-605.
- [15] Laina I, Rupprecht C, Belagiannis V, et al. Deeper depth prediction with fully convolutional residual networks[C] // 2016 Fourth International Conference on 3D Vision (3DV), October 25-28, 2016, Stanford, CA, USA. New York: IEEE, 2016: 239-248.
- [16] He K M, Sun J, Tang X O. Guided image filtering
 [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(6): 1397-1409.
- [17] Fei Y J, Shao F. Contrast adjustment based on image retrieval [J]. Laser & Optoelectronics Progress, 2018, 55(5): 051002.
 费延佳, 邵枫. 基于图像检索的对比度调整[J].激光与光电子学进展, 2018, 55(5): 051002.
- [18] Wang L J, Yang Y Y, Dai M, et al. Near infrared spectral pre-processing algorithm based on histogram layering mapping [J]. Laser & Optoelectronics Progress, 2017, 54(9): 093001.
 王丽杰,杨羽翼,代敏,等.基于直方图分层映射的近红外光谱预处理算法[J].激光与光电子学进展, 2017, 54(9): 093001.