Li⁺/Bi³⁺ 共掺杂 Lu₂O₃:Ho³⁺ 荧光粉的制备 及其发光特性

赵海琴^{1,2}**, 王林香^{1,2}*, 庹娟^{1,2}, 叶颖^{1,2}, 李国娇^{1,2} ¹新疆师范大学物理与电子工程学院, 新疆 乌鲁木齐 830054; ²新疆师范大学矿物发光及其微结构重点实验室, 新疆 乌鲁木齐 830054

摘要 利用高温固相法制备了一系列 Li⁺、Bi³⁺ 掺杂 Lu₂O₃:Ho³⁺荧光粉体。研究结果表明,不同摩尔分数 Li⁺、Bi³⁺与 Ho³⁺的掺入不改变 Lu₂O₃ 的立方相结构;与 Lu₂O₃:2% Ho³⁺样品相比,16% Li⁺掺杂、1.5% Bi³⁺掺杂以及 2% Li⁺与 1.5% Bi³⁺ 共掺样品的发光强度分别提高了 3.0,128.9,1.4 倍;而在 449 nm 波长激发下,三个样品的荧光 寿命均有不同程度的缩短。

关键词 材料;高温固相法;Li⁺、Bi³⁺共掺杂Lu₂O₃:Ho³⁺荧光粉;能量传递;发光特性;荧光寿命
 中图分类号 O482.31 文献标识码 A doi: 10.3788/LOP55.081602

Preparation and Luminescent Properties of Li⁺/Bi³⁺ Co-Doped Lu₂O₃:Ho³⁺ Phosphors

Zhao Haiqin^{1,2 **}, Wang Linxiang^{1,2 *}, Tuo Juan^{1,2}, Ye Ying^{1,2}, Li Guojiao^{1,2}

¹ Institute of Physics and Electronic Engineering, Xinjiang Normal University, Urumqi, Xinjiang 830054, China; ² Key Laboratory of Novel Luminescent Materials and Nanostructures, Xinjiang Normal University, Urumqi, Xinjiang 830054, China

Abstract A series of Li^+ , Bi^{3+} co-doped Lu_2O_3 : Ho^{3+} phosphors are prepared by the high temperature solid-state method. The research results show that the doping of Li^+ , Bi^{3+} and Ho^{3+} with different mole fractions does not change the cubic phase structure of Lu_2O_3 . Compared with that of Lu_2O_3 : 2% Ho^{3+} sample, the luminescence intensities of the three kinds of samples doped with 16% Li^+ , 1.5% Bi^{3+} , 2% $Li^+/1.5\%$ Bi^{3+} increase by 3.0, 128.9, 1.4 times, respectively. However, the fluorescence lifetimes of these three kinds of samples under the excitation of a laser with a wavelength of 449 nm are shortened by different degrees.

Key words materials; high temperature solid-state method; Li^+ , Bi^{3+} co-doped Lu_2O_3 : Ho^{3+} phosphor; energy transfer; luminescence properties; fluorescence lifetime

OCIS codes 160.4670; 160.5690; 300.6280

1 引 言

稀土发光材料是材料科学和纳米材料研究中重要的一类材料,在许多领域有非常重要的应用。闪 烁体材料因具有光输出率高、衰减速度快、无余辉等 优良闪烁特性而得到广泛关注^[1]。闪烁体材料是一 种在 X 射线或 α、β 射线等高能粒子的照射下发出 紫外或可见光的功能材料,在核医学成像、高能物 理、安全检测、地质勘探、工业测控等领域有着广泛 应用。核医学成像检测技术的发展和普及,极大推 动了闪烁晶体产业的发展^[2],为了满足辐射检测成 像精度的要求,良好的闪烁体应具有密度大、吸收效 率高、衰减时间短等特点^[3]。在众多的氧化物中, Lu₂O₃ 容易实现稀土离子掺杂,且其物理化学性质

收稿日期: 2017-12-14; 修回日期: 2018-01-30; 录用日期: 2018-03-07

基金项目:新疆维吾尔自治区自然科学基金(2017D01A60)、新疆师范大学本科生科技创新项目(201610762098, 201710762151)

^{*} E-mail: wanglinxiang23@126.com; ** E-mail: 1322312454@qq.com

稳定,声子能量较低^[4],是陶瓷闪烁和高功率激光器 激光增益介质材料的理想选择之一^[5]。

稀土 Ho³⁺具有丰富的能级,激发态能级寿命 较长,具有优异的绿光发射特性,还具有特殊的阶梯 状能级结构,是最重要的上转换激活离子之一。 Ho³⁺ 掺杂的 YAG、NaYF₄、BaY₂F₈ 等晶体中可观 察到 Ho^{3+} 的⁵ F_4 (⁵ S_2) \rightarrow ⁵ $I_5 \rightarrow$ ⁵ I_6 及⁵ $I_7 \rightarrow$ ⁵ I_8 的跃迁 发射[6]。尹珍珍等[7]选择温和的水热合成以及溶剂 热法,通过 Yb³⁺/Er³⁺ 或者 Yb³⁺/Ho³⁺ 共掺,在 Lu₂O₃和KScF₄基质中实现了可控合成和上转换 发光调控;安丽琼等[8]采用共沉淀工艺,合成了一种 Yb^{3+} 和 Ho³⁺共掺杂的 Lu₂O₃ 纳米粉体,研究了粉 体的上转换发光特性以及煅烧温度对粉体发光性能 的影响;刘松彬等^[9]研究了Li⁺掺杂对SrLu₂O₄: Ho³⁺/Yb³⁺荧光粉上转换发光性能的影响,结果表 明,适量的Li⁺掺杂可以改善样品的团聚现象,并使 得发光强度明显增强;徐利等[10]以较廉价的碱土氟 化物(BaF_2)和稀土氧化物(Yb_2O_3 、 Er_2O_3 、 Tm_2O_3 、 Ho₂O₃)为原料,制备了一系列 Yb³⁺、Er³⁺、Tm³⁺、 Ho³⁺稀土离子双掺、三掺和四掺的氟氧化物玻璃, 并研究了这些稀土离子在玻璃基质中的发光性质。 但目前关于金属离子与 Ho3+ 共掺杂 Lu2 O3 基质的 发光材料研究相对较少,文献[11-12]表明,Li+由于 较小的离子半径很容易被引入到基质中晶格间隙位 置处,造成晶格畸变,使晶体场对称性降低,从而使 其发光强度增强。Bi³⁺在不同的基质中可以用作激 活剂^[13-15],也可以用作敏化剂^[16-17],Li⁺和Bi³⁺作为敏 化剂^[18-19]可有效改善发光中心 Ho³⁺的发光,而且合 适浓度的Bi³⁺能够将激发能有效传递给Ho³⁺,从而 提高荧光粉的发光强度。

本文选择制备工艺简单的高温固相法,制备了 一系列金属离子 Li⁺、Bi³⁺ 掺杂 Lu₂O₃:Ho³⁺ 发光 粉体,研究并分析了不同浓度、不同煅烧温度下 Ho³⁺的掺杂以及不同浓度的 Li⁺、Bi³⁺ 掺杂对合成 荧光粉末微观结构和发光性质的影响。

2 样品的制备及测试

按照表1中的化学配比,用上海梅特勒-托利多 仪器有限公司的AL104型电子天平称取Lu₂O₃(质 量分数为99.99%),Ho₂O₃(质量分数为99.99%), Li₂CO₃(质量分数为99%,分析纯),Bi₂O₃(质量分数 为99%,分析纯)试剂,将混合物用玛瑙研钵研磨 30 min后,装入石英坩埚,放入安徽贝意克设备技术 有限公司的KSL-1400G型箱式电阻炉,在空气中以 不同煅烧温度(800~1100℃)加热不同时间(0.28 h 和2h),然后自然冷却至室温,获得Ho³⁺、Li⁺、Bi³⁺ 掺杂Lu₂O₃系列荧光材料,离子掺杂浓度均为摩尔 分数(M%)。

Sample	Mole fraction of	Mole fraction of	Mole fraction of	Mole fraction of	Temperature /	Time /
No.	${ m Ho^{3+}}/{}^{0\!\!/_{0}}$	Li ⁺ / %	Bi^{3+} / $\%$	Lu_2O_3 / $\frac{1}{2}$	°C	h
1	0.5	0	0	99.5	800	2
2	1	0	0	99	800	2
3	2	0	0	98	800	2
4	5	0	0	95	800	2
5	2	0	0	98	900	2
6	2	0	0	98	1000	2
7	2	0	0	98	1100	2
8	2	0	0	98	1100	0.28
9	2	2	0	96	1100	2
10	2	5	0	93	1100	2
11	2	8	0	90	1100	2
12	2	12	0	86	1100	2
13	2	16	0	82	1100	2
14	2	20	0	78	1100	2
15	2	0	0.1	97.9	1100	2
16	2	0	0.5	97.5	1100	2
17	2	0	1	97	1100	2
18	2	0	1.5	96.5	1100	2
19	2	0	2	96	1100	2
20	2	1	1.5	95.5	1100	2
21	2	2	1.5	94.5	1100	2
22	2	5	1.5	91.5	1100	2

表 1 不同摩尔分数的 Ho³⁺、Li⁺、Bi³⁺掺杂 Lu₂O₃ 样品 Table 1 Lu₂O₃ samples doped with Ho³⁺, Li⁺ and Bi³⁺ with different mole fractions

用日本岛津公司生产的 XRD-6100 型衍射仪对 粉体进行物相分析,测试条件:Cu Kα,波长为 0.154056 nm,工作电压为 40 kV,工作电流为 30 mA,扫描范围[20°,80°],扫描速度为 5(°)・min⁻¹。用德国蔡司公司生产的 SUPRA 55VP型场发射扫描电子显微镜(工作电压为 20 kV)观察粉体形貌、直径及分散性等。用英国爱 丁堡公司生产的 FLS920 型稳态/瞬态荧光光谱仪 分析样品的激发光谱、发射光谱以及能级衰减曲线, 并在观测光栅入口处放置相应的滤光片,以消除光 源杂散光和倍频峰的影响,所用仪器在实验前均进 行了校正,测量均在室温下进行。

3 实验结果与讨论

3.1 粉体的结构特征

图 1 ~ 4 所示分别为不同温度煅烧 Lu₂O₃: 2%Ho³⁺样品、1100 ℃煅烧 2 h 获得的不同浓度 Li⁺ 掺杂 Lu₂O₃: 2% Ho³⁺ 样品、不同浓度 Bi³⁺ 掺杂 Lu₂O₃: 2% Ho³⁺ 样品以及 Li⁺/Bi³⁺ 共掺 Lu₂O₃: 2%Ho³⁺样品的 X 射线衍射(XRD)图谱(此处浓度仅 展示了每种离子掺杂的最佳浓度和最弱浓度)。结果 表明,所有样品的衍射峰位置与 Lu₂O₃ 标准卡片 JCPDS 86-2475 基本一致,说明 Ho³⁺和金属离子 Li⁺、Bi³⁺的掺杂没有引起 Lu₂O₃ 基质立方晶相结 构的改变。此外还发现,掺杂了 Li₂CO₃ 的样品在 22°附近均出现一个极弱的衍射峰,低掺杂时不明 显,当掺杂浓度为 16%时,22°处的峰比较明显,与 由原料组成元素形成的所有化合物衍射峰比对均未 发现该峰,可能是由 Li₂CO₃ 原料中的少量杂质引 起的。

图 1 不同煅烧温度下获得的 Lu₂O₃:2% Ho³⁺ 粉末的 XRD 图 Fig. 1 XRD patterns of Lu₂O₃:2% Ho³⁺ powders obtained

under different calcination temperatures

3.2 粉体的表面形貌分析

图 5 所示为在空气中以 1100 ℃ 煅烧 2 h 后 Lu₂O₃:2% Ho³⁺、16% Li⁺ 掺杂 Lu₂O₃:2% Ho³⁺、

图 2 不同浓度 Li⁺掺杂 Lu₂O₃:2%Ho³⁺粉末的 XRD 图 Fig. 2 XRD patterns of Lu₂O₃:2%Ho³⁺ powders doped with Li⁺ with different concentrations

Fig. 3 XRD patterns of $Lu_2 O_3 : 2\% Ho^{3+}$ powders doped with Bi^{3+} with different concentrations

图 4 Li⁺/Bi³⁺共掺 Lu₂O₃:2%Ho³⁺粉末的 XRD 图 Fig. 4 XRD patterns of Lu₂O₃:2%Ho³⁺ powders co-doped with Li⁺/Bi³⁺

1.5% Bi^{3+} 掺杂 Lu_2O_3 : 2% Ho^{3+} 和 2% $Li^+/$ 1.5% Bi^{3+} 共掺 Lu_2O_3 : 2% Ho^{3+} 荧光粉末的扫描电 子显微镜(SEM)照片。从图 5 可以看出,掺杂离子 和不掺杂离子样品的形貌无明显变化,都呈近球形。 但是未掺杂金属离子样品的粒径不均匀,有一定的 团聚现象,而掺杂了离子的样品的颗粒大小趋于均 匀,且分散性较好,团聚现象得到改善。 Lu_2O_3 : 2% Ho^{3+} 样品的粒子直径在 70 nm 左右,与不掺离 子的样品相比, Li^+ 掺杂, Bi^{3+} 掺杂, Li^+/Bi^{3+} 共掺样 品的粒子直径均有不同程度的增大, $16\%Li^+$ 掺杂 Lu_2O_3 : 2% Ho^{3+} 样品的粒子直径为 140~170 nm, 1.5% Bi^{3+} 掺杂 Lu_2O_3 : 2% Ho^{3+} 样品的粒子直径为

图 5 样品的 SEM 照片。(a) Lu₂O₃:2%Ho³⁺;(b) 16%Li⁺掺杂 Lu₂O₃:2%Ho³⁺;
(c) 1.5%Bi³⁺掺杂 Lu₂O₃:2%Ho³⁺;(d) 2%Li⁺/1.5%Bi³⁺共掺杂 Lu₂O₃:2%Ho³⁺
Fig. 5 SEM images of samples. (a) Lu₂O₃:2%Ho³⁺; (b) Lu₂O₃:2%Ho³⁺ doped with 16%Li⁺;

(c) $Lu_2O_3:2\%$ Ho³⁺ doped with 1.5% Bi³⁺; (d) $Lu_2O_3:2\%$ Ho³⁺ co-doped with 2% Li⁺/1.5% Bi³⁺

200 mn

170~260 nm,2% Li⁺/1.5% Bi³⁺ 共掺杂 Lu₂O₃: 2%Ho³⁺样品的粒子直径为 610~690 nm。

3.3 粉体的光致发光性质

图 6 所示是以 551 nm 作为发射峰监测得到的 Lu₂O₃: 2% Ho³⁺ 荧光粉末样品的激发光谱与 449 nm激发下的发射光谱。激发光谱中 200~ 250 nm对应Lu₂O₃ 基质的吸收,361 nm 附近的激 发峰来自Ho³⁺的⁵I₈→⁵G₂ 的能级跃迁,449 nm 处 的主激发峰对应于Ho³⁺的⁵I₈→⁵F₁ 的能级跃迁, 456 nm 附近的激发峰源于Ho³⁺的⁵I₈→⁵G₆ 的能级 跃迁,466 nm 处的激发峰对应Ho³⁺的⁵I₈→³K₈ 的 能级跃迁^[20]。551 nm 处主发射峰对应于Ho³⁺ 的⁵S₂→⁵I₈ 的能级跃迁,发光较强;处于 755 nm 附 近的发射峰相对较弱,它来自于 Ho^{3+} 的⁵F₄, ⁵S₂→⁵I₇的能级跃迁^[20]。发射特征峰连续变化说明 Ho^{3+} 进入到 Lu_2O_3 晶格中。在烧结温度为 800 ℃ 下烧结 2 h时,随着 Ho^{3+} 摩尔分数从0.5%提高到 5%, Lu_2O_3 :2% Ho^{3+} 样品在 551 nm 处的发光强度 先增强后减弱,由此得到 Ho^{3+} 的最佳掺杂浓度为 2%。当 Ho^{3+} 浓度逐渐增加时, Ho^{3+} 离子之间的距 离逐渐变小,引起交叉弛豫,从而导致浓度猝灭^[21]。 如图 6(b)插图所示,在烧结温度为 800~1100 ℃下 烧结 2 h时, Ho^{3+} 单掺 Lu_2O_3 样品的发光强度随着 温度的升高而增强;1100 ℃下烧结 2 h 的样品的发 光强度相比于 1100 ℃下烧结 0.28 h 的样品提高了 2.4 倍。

图 6 Lu₂O₃:2%Ho³⁺粉末样品的光谱。(a)激发光谱;(b)发射光谱

Fig. 6 Spectra of $Lu_2 O_3 : 2^{0/2} Ho^{3+}$ samples. (a) Excitation spectra; (b) emission spectra

图 7 所示为 1100 ℃下煅烧 2 h 获得的不同浓 度 Li⁺掺杂 Lu₂O₃:2%Ho³⁺荧光粉的激发光谱和 发射光谱。用 Li⁺作为助熔剂和电荷补偿剂已在不 同的荧光基质中得到广泛的研究^[22-24]。Li⁺能够增 强发光的原因可能是因为 Li⁺体积很小,很容易被

掺入到 Lu_2O_3 晶格中,离子间的电荷相互作用改变 Ho³⁺ 周围的局域结构,使晶场对称性降低,从而提 高 Ho³⁺ 的发光强度^[25]。与 $Lu_2O_3:2\%$ Ho³⁺ 样品 的发光强度相比,16% Li⁺ 掺杂样品的发光强度提 高了 3.0 倍。

图 7 Li⁺掺杂 Lu₂O₃:2%Ho³⁺粉末样品的光谱。(a)激发光谱;(b)发射光谱 Fig. 7 Spectra of Lu₂O₃:2%Ho³⁺ samples doped with Li⁺. (a) Excitation spectra; (b) emission spectra

由图 7 可知,当荧光粉末掺杂 Li⁺的浓度为 16%时,Ho³⁺的特征发射峰强度最强。曾晓岛^[26] 在研究中发现,将适量 Li⁺掺进基质 Lu₂O₃ 中会导 致晶格中氧数量降低并提高氧空位浓度,而氧空位 浓度的增加可降低基质竞争吸收,从而加快基质到 Ho³⁺的能量传递,提高 Ho³⁺的发光强度和发光效 率,然而 Li⁺掺杂量过多又可能会形成更多的缺陷 结构,导致非激活中心浓度提高从而加剧发光猝灭 程度,与本实验的结果一致。

图 8 所示为 1100 ℃下煅烧 2 h 获得的不同浓 度 Bi³⁺掺杂 Lu₂O₃:2%Ho³⁺荧光粉的激发光谱和 发射光谱图。以 Bi³⁺作为敏化剂,分析讨论 Bi³⁺掺 杂对 Lu₂O₃:2%Ho³⁺荧光粉发光性质的影响。与 Lu₂O₃:2%Ho³⁺样品的发光强度相比,1.5%Bi³⁺掺 杂样品的发光强度提高了 128.9 倍。

由图 8(a)可看出,未掺杂 Bi³⁺样品中只有位于 449 nm 处 Ho³⁺的激发主峰,而掺杂了 Bi³⁺的样品 在 300~400 nm 之间出现了较强的吸收带,且在

326 nm 处的激发较强。Ho³⁺激发峰的强度随 Bi³⁺ 掺杂浓度的增加而增加。据文献[27]报道,Bi³⁺在 紫外区 250~400 nm 之间有很强的吸收。由图 8 可以看出,随着 Bi³⁺浓度的增加,Bi³⁺在 326 nm 处 的激发先增强后减弱,而相应 Ho³⁺在 326 nm 及 449 nm 处的激发一直增强。这说明 Bi³⁺获得激发, 将激发能量传递给了 Ho³⁺,使得 Ho³⁺激发增强, Bi³⁺掺入对 Ho³⁺起到敏化发光作用,这与文献[28] 的报道结果一致。

如图 8(b)发射光谱所示,掺杂 Bi³⁺的样品出现 了 Bi³⁺的宽发射带,这是由于 Bi³⁺对 Ho³⁺发生部 分能量传递,Bi³⁺本身受到激发而发光。在 326 nm 激发下,随着 Bi³⁺浓度的升高,500~550 nm 附近的 宽带发光峰强度减弱,551 nm 处的发光强度增强, 即 Bi³⁺的发光减弱,Ho³⁺的发光增强,说明 Bi³⁺和 Ho³⁺之间确实存在能量传递^[16,29]。由图 8 可知,掺 杂了 Bi³⁺的 Lu₂O₃:2%Ho³⁺荧光粉样品的发光明显 增强,这说明 Bi³⁺有效地将一部分激发能传递给了

图 8 Bi³⁺ 掺杂 Lu₂O₃: 2%Ho³⁺ 粉末样品的光谱。(a)激发光谱;(b)发射光谱

Fig. 8 Spectra of Lu_2O_3 : 2% Ho³⁺ samples doped with Bi³⁺. (a) Excitation spectra; (b) emission spectra

 Ho^{3+} ,提高了 Ho^{3+} 的发光。随着 Bi^{3+} 浓度的增加, Ho^{3+} 发光呈现出先增强后减弱的趋势,当 Bi^{3+} 摩尔 分数为 1.5%时, Ho^{3+} 的发光强度达到最大值。这是 因为 Bi^{3+} 浓度开始增加时, Bi^{3+} 离子数量增加, Bi^{3+} 对 Ho^{3+} 的敏化和能量传递几率均增大,使得 Ho^{3+} 获 得的激发能增加,故 Ho^{3+} 的发光强度相应增强,但 Bi^{3+} 浓度达到一定值后,间距较小的 Bi^{3+} 离子之间的 交叉弛豫几率增加, Bi^{3+} 吸收的能量通过非辐射跃迁 的形式释放,从而出现浓度猝灭,不利于 $Bi^{3+} \rightarrow Ho^{3+}$ 的能量传递^[28,30-31],进而导致 Ho^{3+} 发光减弱。由此 可见,适量的 Bi^{3+} 掺杂可以有效地提高荧光粉的发光 强度,但过高的 Bi^{3+} 含量对发光性能不利。

以Li⁺ 作为助熔剂,1.5%Bi³⁺ 作为敏化剂的

Lu₂O₃: 2% Ho³⁺ 荧光粉的发射光谱和激发光谱如 图 9 所示。和 M% Li⁺/1.5% Bi³⁺ 共掺 Lu₂O₃: 2% Ho³⁺ 样品进行比较得出,随着 Li⁺ 掺杂浓度的增加, 样品发光强度随之增强,Li⁺ 的掺杂浓度为 2%的样 品相对发光强度较强,而当 Li⁺ 的含量进一步增加 时,出现发光猝灭。实验发现,M% Li⁺/1.5% Bi³⁺ 共 掺 Lu₂O₃: 2% Ho³⁺ 样品的发光均比 1.5% Bi³⁺ 掺杂 Lu₂O₃: 2% Ho³⁺ 样品 弱,这是因为在 2% Ho³⁺、 1.5% Bi³⁺ 掺杂的基础上,过量 Li⁺ 的掺杂会引起样品 内部缺陷增加,使得 Bi³⁺ 与 Ho³⁺离子之间的能量传 递迅速降低,从而导致样品发光强度降低^[28]。与 Lu₂O₃: 2% Ho³⁺ 样品的发光强度相比, 2% Li⁺/ 1.5% Bi³⁺ 共掺样品的发光强度提高了 1.4 倍。

图 9 M%Li⁺/1.5%Bi³⁺共掺 Lu₂O₃: 2%Ho³⁺样品的光谱。(a)激发光谱;(b)发射光谱

Fig. 9 Lu_2O_3 : 2% Ho³⁺ samples co-doped with $M\% Li^+/1.5\% Bi^{3+}$. (a) Excitation spectra; (b) emission spectra

3.4 荧光寿命

在 449 nm 激发下,测量了 Lu₂O₃: 2% Ho³⁺、 16% Li⁺ 掺杂 Lu₂O₃: 2% Ho³⁺、1.5% Bi³⁺ 掺杂 Lu₂O₃: 2% Ho³⁺ 以及 2% Li⁺/1.5% Bi³⁺ 共掺杂 Lu₂O₃: 2% Ho³⁺ 四个样品中 Ho³⁺的⁵S₂ 能级衰减 曲线,用双指数函数^[32]进行拟合,结果如图 10 所 示。计算得到以上四个样品中 Ho³⁺的⁵S₂ 能级寿 命分别为 70,55,69,62 μ s。在 449 nm 激发下,与 Lu₂O₃: 2% Ho³⁺ 样品的寿命相比,16% Li⁺ 掺杂、 1.5% Bi³⁺ 掺杂以及 2% Li⁺/1.5% Bi³⁺ 共掺的三个

Fig. 10 Energy level decay curves of four kinds of samples

样品的荧光寿命均有不同程度的减小,这可能是因 为掺杂离子的助熔和敏化效应使得辐射跃迁几率得 以提高,从而导致衰减时间缩短,有关机理还有待于 进一步研究。

4 结 论

使用高温固相法制备了一系列 Li^+ 、 Bi^{3+} 掺杂 $Lu_2O_3:2\%Ho^{3+}$ 荧光粉,研究结果表明: Ho^{3+} 能完 全融入到 Lu_2O_3 晶体中,并且 Li^+ 掺杂、 Bi^{3+} 掺杂以 及 Li^+/Bi^{3+} 共掺不影响 Lu_2O_3 的立方相结构; Li^+ 掺杂, Bi^{3+} 掺杂, Li^+/Bi^{3+} 共掺 $Lu_2O_3:2\%Ho^{3+}$ 样 品的最佳掺杂浓度分别为 16%,1.5%,2%。与 $Lu_2O_3:2\%Ho^{3+}$ 相比, $16\%Li^+$ 掺杂、 $1.5\%Bi^{3+}$ 掺杂 以及 $2\%Li^+/1.5\%Bi^{3+}$ 共掺的三个样品的发光强度 分别提高了 3.0,128.9,1.4倍,但它们的荧光寿命均 有不同程度的减小。

参考文献

 Zhao M. Study on luminescence and microstructure of Eu³⁺ doped Lu₂O₃ nanopowder[D]. Yantai: Yantai University, 2014.

赵曼. Eu³⁺掺杂 Lu₂O₃ 纳米粉体发光与微结构研 究[D]. 烟台: 烟台大学, 2014.

 [2] Hong G Y. Research progress of rare earth luminescent materials[J]. Journal of Synthetic Crystals, 2015, 44(10): 2641-2651.
 洪广言.稀土发光材料的研究进展[J].人工晶体学

报,2015,44(10):2641-2651.

[3] Wang L X. Effect of synthetic conditions on luminescent properties of (Eu_{0.045} Li_{3 x} Lu_y)₂O₃ nanocrystals by precipitation[J]. Acta Optica Sinica, 2016, 36(3): 0316001.

王林香. 合成条件对(Eu_{0.045} Li_{3x} Lu_y)₂O₃ 纳米晶发 光性能的影响[J]. 光学学报, 2016, 36(3): 0316001.

 Li L. Preparation and luminescent properties of rare earth doped Lu₂O₃ nanomaterials[D]. Hefei: University of Science and Technology of China, 2012.

李丽.稀土掺杂 Lu₂O₃ 纳米材料的制备与发光性 质[D].合肥:中国科学技术大学, 2012.

- [5] Wang P H, Wang N L, Zhang X Y. Carbonate coprecipitation synthesis of Lu₂O₃: Er³⁺ nano-powders and its characterization[J]. Chinese Journal of Inorganic Chemistry, 2012, 28(11): 2335-2340.
 王鹏贺, 王能利, 张希艳. 碳酸盐共沉淀法合成 Lu₂O₃: Er³⁺纳米粉体及性能表征[J]. 无机化学学 报, 2012, 28(11): 2335-2340.
- [6] Sun J Y, Du H Y, Hu W X. Solid luminescent materials[M]. Beijing: Chemical Industry Press, 2003: 566-571.
 孙家跃,杜海燕,胡文祥.固体发光材料[M].北京: 化学工业出版社, 2003: 566-571.
- [7] Yin Z Z. Controllable synthesis and luminescent properties of Yb³⁺, Er³⁺/Ho³⁺ co-doped Lu₂O₃, KScF₄ up-conversion nano-materials [D]. Changsha: Hunan Normal University, 2015.
 尹珍珍. Yb³⁺、Er³⁺/Ho³⁺ 共掺杂的 Lu₂O₃、KScF₄ 上转换纳米晶的可控合成及发光性质研究 [D]. 长沙: 湖南师范大学, 2015.
- [8] An L Q, Zhang J, Liu M. Spectroscopic study of Lu₂O₃: Yb³⁺, Ho³⁺ nanopowders[J]. Journal of Inorganic Materials, 2008, 23(2): 383-386.
 安丽琼,章健,刘敏.Lu₂O₃:Yb³⁺, Ho³⁺纳米粉体 的发光性能研究[J]. 无机材料学报, 2008, 23(2): 383-386.
- [9] Liu S B, Chen M Y, Liu S F, et al. Effect of Li⁺ doping on upconversion luminescence property of

 $SrLu_2O_4$: Ho^{3+}/Yb^{3+} phosphors[J]. Acta Optica Sinica, 2017, 37(6): 0616002.

刘松彬,陈梦瑶,刘水富,等.Li⁺掺杂对 SrLu₂O₄: Ho³⁺/Yb³⁺荧光粉上转换发光性能的影响[J].光学 学报,2017,37(6):0616002.

- [10] Xu L. Specter of Yb³⁺/Er³⁺/Tm³⁺/Ho³⁺ codoped oxyfluoride glass[D]. Changchun: Changchun University of Technology, 2009.
 徐利.Yb³⁺/Er³⁺/Tm³⁺/Ho³⁺共掺氟氧化物玻璃光 谱特性研究[D].长春:长春理工大学, 2009.
- [11] Yeh S M, Su C S. Mixing LiF in Gd₂0₃: Eu to enhance ultraviolet radiation induced thermoluminescent sensitivity after sintering process [J]. Materials Science and Engineering, 1996, 38(3): 245-249.
- [12] Sun L D, Qian C, Liao C S, et al. Luminescent properties of Li⁺ doped nanosized Y₂O₃:Eu³⁺ [J].
 Solid State Communications, 2001, 119 (6): 393-396.
- [13] Takeshita S, Watanabe T, Isobe T, *et al*. Improvement of the photostability for $YVO_4 : Bi^{3+}$, Eu^{3+} nanoparticles synthesized by the citrate route[J]. Optical Materials, 2011, 33(3): 323-326.
- Park W J, Jung M K, Im S J, et al. Photoluminescence characteristics of energy transfer between Bi³⁺ and Eu³⁺ in LnVO₄:Eu, Bi (Ln=Y, La, Gd) [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313/314: 373-377.
- [15] Park W J, Yoon S G, Yoon D H. Photoluminescence properties of Y₂O₃ co-doped with Eu and Bi compounds as red-emit-ting phosphor for white LED[J]. Journal of Electroceramics, 2006, 17(1): 41-44.
- [16] Yang C N, Li J, Qiu J B, et al. Synthesis and photo luminescence properties of Eu³⁺ and Bi³⁺ co-doped BaZro₃ phosphors[J]. Spectroscopy and Spectral Analysis, 2013, 33(1): 19-22.
 杨朝宁,李俊,邱建备,等. Eu³⁺和 Bi³⁺共掺杂锆酸 钡荧光粉的制备及发光性质研究[J].光谱学与光谱 分析, 2013, 33(1): 19-22.
- [17] Zhang Q X, Long D D, Zhang F, et al. Influence of Bi³⁺ doping on properties of CaMoO₄ : Eu³⁺ phosphors[J]. Spectroscopy and Spectral Analysis, 2013, 33(7): 1758-1762.
 张清侠,龙丹丹,张帆,等.Bi³⁺ 掺杂对 CaMoO₄: Eu³⁺荧光粉发光性质的影响[J].光谱学与光谱分析, 2013, 33(7): 1758-1762.
- Wang T, Fan H Y, Zhao G Y, et al. Luminescence properties of Yb³⁺-doped bismuthate glass[J]. Chinese Journal of Lasers, 2017, 44(9): 0903001.

汪韬,范慧艳,赵国营,等.Yb³⁺掺杂铋酸盐玻璃的 发光特性[J].中国激光,2017,44(9):0903001.

 [19] Wang Y, Chen Y J, Geng X J, et al. Preparation and luminescent properties of blue phosphors K(Na)Ba(Ca) PO₄:Eu²⁺ [J]. Laser & Optoelectronics Progress, 2016, 53(1): 031601.

> 王莹, 陈永杰, 耿秀娟, 等. 蓝色荧光粉 K(Na)Ba (Ca)PO4:Eu²⁺的制备与其发光性能[J].激光与光电 子进展, 2016, 53(3): 031601.

- Yang J, Li C X, Quan Z W, et al. Self-assembled 3D flower like Lu₂O₃ and Lu₂O₃: Ln³⁺ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: Ethylene glycerin-mediated hydrothermal synthesis and luminescent properties[J]. The Journal of Physical Chemistry C, 2008, 112(33): 12777-12785.
- [21] Liu G S. Study on the photoluminescence properties of Gd₂O₃ : Sm and Bi³⁺, Na⁺ doped Gd₂O₃ : Sm nanocrystals[D]. Zhengzhou: Henan University, 2008.

刘广生. Gd₂O₃:Sm 及 Bi³⁺, Na⁺ 掺杂 Gd₂O₃:Sm 纳米晶的光致发光性能研究[D]. 郑州:河南大学, 2008.

[22] Wan Y, He J Y, Ma Y Y, et al. Luminescence properties of blue emitting long afterglow phosphors CaAl₂O₄ : Eu²⁺, Li⁺ [J]. Chinese Journal of Luminescence, 2016, 37(2): 181-186.

> 万英,何久洋,马媛媛,等. 蓝色长余辉材料 CaAl₂O₄: Eu²⁺,Li⁺的发光性质[J].发光学报, 2016,37(2):181-186.

SrAl₂Si₂O₈:Eu³⁺, Li⁺ 的制备和发光性能研究[J]. 光电子・激光, 2015, 26(8): 1520-1525.

- [24] Yang Y, Chen Y J, Xiao L J, et al. Synthesis and luminescence properties of Sr₃B₂O₆: Eu³⁺, Li⁺ phosphor[J]. Chinese Journal of Luminescence, 2014, 35(3): 317-321.
 杨英,陈永杰,肖林久,等. Sr₃B₂O₆: Eu³⁺, Li⁺荧光 粉的合成与发光性能[J]. 发光学报, 2014, 35(3):
- [25] Jia Y T. Study on up-conversion photoluminescence of Ho³⁺-doped oxides of rare earth ions[D]. Suzhou: Soochow University, 2010.

317-321.

贾玉涛.稀土离子 Ho³⁺掺杂氧化物上转换光致发光的研究[D].苏州:苏州大学,2010.

- [26] Zeng X D. Sythesis and properties of metal ions codoped rare earth orthophosphate phosphors[D].
 Guizhou: Guizhou Normal University, 2015.
 曾晓岛.金属离子共掺杂稀土正磷酸盐发光材料的 制备与性能[D].贵州:贵州师范大学, 2015.
- [27] Yang J L, Wang Z. Preparation and characterization of red phosphors CaWO₄: Eu³⁺, Li⁺, Bi³⁺ for white LED[J]. Journal of the Chinese Rare Earth Society, 2010, 28(5): 536-542.
 杨继兰,王卓.白光 LED 用红色荧光粉 CaWO₄: Eu³⁺, Li⁺, Bi³⁺的制备与表征[J].中国稀土学报, 2010, 28(5): 536-542.
- [28] Guan R F, Sun Q, Li Q Q, et al. Co-precipitation synthesis and characterization of CaMoO₄: Eu³⁺, Bi³⁺, Li⁺ red phosphor[J]. Chinese Journal of Luminescence, 2013, 34(8): 1000-1005.
 关荣峰,孙倩,李勤勤,等. CaMoO₄: Eu³⁺, Bi³⁺, Li⁺红色荧光粉的共沉淀制备与表征[J].发光学报, 2013, 34(8): 1000-1005.
- [29] Geng X J, Yang X, Li Z Y, et al. Luminescence investigation of Eu³⁺-Bi³⁺ co-doped Ca_{0.7} Sr_{0.3} MoO₄ phosphor [J]. Journal of Optoelectronics • Laser, 2015, 26(5): 905-909.
 耿秀娟,杨旭,李梓杨. Eu³⁺-Bi³⁺共掺杂 Ca_{0.7} Sr_{0.3} MoO₄ 荧光粉发光性能的研究[J]. 光电子 • 激光, 2015, 26(5): 905-909.
- [30] He X H, Guan M Y, Lian N, et al. Synthesis and luminescence characteristics of K₂Bi(PO₄)(MO₄): Eu³⁺(M=Mo, W) red-emitting phosphor for white LEDs[J]. Journal of Alloys and Compounds, 2010, 492(1/2): 452-455.
- [31] Park W J, Jung M K, Im S J, et al. Photoluminescence characteristics of energy transfer between Bi³⁺ and Eu³⁺ in LnVO₄:Eu, Bi (Ln=Y, La, Gd)[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313-314: 373-377.
- [32] Chen W J, Lin M R, Jiang H L, et al. Dynamic model analysis of double exponential fluorescence attenuation [J]. Acta Optica Sinica, 1986, 6(12): 1124-1129.

陈文驹,林美荣,姜宏丽,等.双指数荧光衰减动力 学模型分析[J].光学学报,1986,6(12):1124-1129.