虹膜识别镜头的光学设计

高永锋1,2, 张 变1, 宋光辉1, 熊 鹏1, 朱佳巍1, 许孝芳1

1江苏大学机械工程学院,江苏镇江 212013;

2镇江市光通信器件工程技术研究中心, 江苏镇江 212000

摘要 设计了一款适用于手机的虹膜识别镜头,该镜头包含 3 片塑胶非球面透镜,焦平面阵列探测器中互补金属 氧化物半导体(CMOS)芯片的像素大小为 1.12 μm。所设计镜头的 F 数为 2.0、全视场角为 32.6°、总长为 4.0 mm。 最佳工作距离为 320 mm 时,在 1/2 奈奎斯特频率处各视场的调制传递函数(MTF)大于 0.45,光学畸变在 1.2%以 内,相对照度大于 87%。该光学系统结构简单、体积小、像质优良。

关键词 光学设计;虹膜识别;塑胶非球面;镜头

中图分类号 TN213 文献标识码 A

doi: 10.3788/LOP54.012204

Optical Design of Iris Recognition Lens

Gao Yongfeng^{1,2}, Zhang Bian¹, Song Guanghui¹, Xiong Peng¹, Zhu Jiawei¹, Xu Xiaofang¹

¹ School of Mechanical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; ² Research Center of Optical Communication Device Engineering Technology of Zhenjiang, Zhenjiang, Jiangsu 212000, China

Abstract An iris recognition lens composed of three plastic aspheric lens for mobile phone application is designed. The pixel size of focal-plan array detector complementary metal oxide semiconductor (CMOS) chip is $1.12 \ \mu\text{m}$. The F number of the designed lens is 2.0, the field of view is 32.6° , and the total length is $4.0 \ \text{mm}$. At the optimal work distance of $320 \ \text{mm}$, the modulation transfer functions (MTF) of all fields at 1/2 Nyquist frequency are larger than 0.45, the optical distortion is less than 1.2%, and the relative illumination is higher than 87%. The optical system has the advantages of simple structure, small volume and excellent image quality. **Key words** optical design; iris recognition; plastic aspheric surface; lens **OCIS codes** 220.4830; 080.2740

1 引 言

虹膜识别技术具有普遍性、防伪性、稳定性、受保护性、采集非接触性等特点,被誉为 21 世纪最具潜力的 生物识别技术之一。比较著名的虹膜识别系统有 John Daugman、Richard Wildes 以及中科院自动化研究所 的虹膜识别系统。John Daugman 系统是 Daugman 博士在剑桥大学设计的虹膜识别系统^[1],该系统采用的 虹膜识别算法为 Daugman 算法,其原理是根据梯度上升来确定虹膜内外圆的半径与圆心^[2];John Daugman 图像采集装置的工作距离在 15~46 cm 之间,虹膜直径范围内能达到 100~200 个像素点,不足之处在于该 装置的造价成本很高。加拿大约克大学的 Richard Wildes 于 1996 年设计了 Richard Wildes 系统,该系统采 用的虹膜识别算法为 Wildes 算法,其原理是先将图像二值化处理,再经 Hough 变换确定虹膜内外圆^[2];

基金项目: 江苏省科技项目计划(青年基金)(BK20150529)、江苏省博士后科研资助计划(1401006B)、江苏大学高级人才基金(14JDG073)、江苏大学大学生实践创新训练项目(201510299188W)、无锡市科技发展资金(CLE02N1508)

作者简介:高永锋(1969—),男,博士,副教授,主要从事光子晶体、光通信器件设计与制备等方面的研究。 E-mail: absgyf69@163.com

收稿日期: 2016-08-23; 收到修改稿日期: 2016-09-19; 网络出版日期: 2016-12-20

Richard Wildes 虹膜采集装置的工作距离为 20 cm,在虹膜直径范围内的像素点可达到 256 个,缺点是灵活 性不够^[3]。在国内,中国科学院自动化研究所于 2009 年设计了一款远距离自动对焦的虹膜图像采集系 统^[4],该系统可以自动对焦至图像最清晰的位置,而且景深较大。早期的图像采集装置受传感器本身的分辨 率限制,拍摄距离很近,如 2001 年,日本 OKI 公司发布的 Iris pass-H 的工作距离只有 4 cm^[5]。虹膜识别技 术在经历了 23 年的商业化之后,取得了突飞猛进的发展,近些年发展势头尤其强劲,被安全控制、海关进出 口检查、电子商务等越来越多的领域认可和接受,其应用领域有望从最初的军用、工用拓展到商用和民用。

虹膜图像的采集是虹膜识别技术的第一步,也是关键一步。本文设计了一款两百万像素的虹膜识别镜头,提高了虹膜采集装置的分辨率并缩小了虹膜识别设备的体积,可用于手机移动终端的识别系统。

2 设计要点

2.1 焦平面阵列探测器

虹膜采集装置的硬件通常都采用红外光作为光源,与可见光光源相比,近红外光不会刺激人眼瞳孔,更容易采集到高质量的虹膜图像,识别率更高^[6]。虹膜识别镜头搭载的电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)传感器具有集成度高、功耗小、结构简单、寿命长、性能稳定等优点,近年来,随着集成工艺技术的提高,CMOS器件功能丰富、结构简单、价格低廉,应用前景十分广阔^[7-8]。本设计中采用波长为832~872 nm的近红外光,配用 Omnivision 公司的 OV2281CMOS 芯片,该芯片的有效分辨率为1920 pixel×1080 pixel,单个像素的大小为1.12 μ m×1.12 μ m,像面大小为 2150 μ m×1209 μ m,经计算,其对角线长度(即全像高)为 2.46 mm。

2.2 主要设计指标

根据市场需求和设计要求综合评估,技术指标如表1所示。

表1 虹膜识别镜头的主要技术指标

Table 1 Main specifications of the iris recognition lens

Item	Specification
Field of view	$>$ 30 $^{\circ}$
TV distortion	<1%
F number	<2.2
Spectral range	832~872 nm
Total length	<4.2 mm
Relative illumination	>80 %
Work distance	250 mm $<$ L $<$ 450 mm
Back focal length	>0.7 mm
Lens structure	3 pieces aspheric
Sensor	OV2281

3 初始结构选择及优化设计

3.1 初始结构选择

初始结构的选取有两种方法:一是基于像差理论建立并求解像差方程;二是从专利库中筛选光学性能相 似的结构,此法是最常用和最方便的。目前,已有的虹膜识别镜头的相关设计中主要缺点有:光学系统总长 太长,会增大采集装置的体积;视场角过大,使虹膜图像的像素点太少;F 数不够小,由镜头的理论分辨率为 1/(1.22λF)可知,F 数越大,理论分辨率越小,因而限制了系统的衍射极限,在虹膜识别上达不到理想的效 果。本设计选取专利 US9134508B2 报道的结构为初始结构,如图 1 所示。

3.2 优化设计

在使用 Code V 软件对初始结构进行优化时可以采用系统操作面板中 Optimization 的 Automatic Design 设置优化限制,主要的优化边界条件如下:

1)约束系统的焦距与总长。根据设计要求,光学总长需控制在 4.2 mm 以内,使用 OALS1…I < 4.2 操作数。

2) 一般情况下,镜片中心厚度与边缘厚度之比最好小于 2:1^[9],以便于镜片的加工。首先在用户自定义 中定义 @ratio_P1==(THIS1)/(ETS1),再在特殊约束中设置 @ratio_P1<2。

3)为了保证虹膜区域有尽可能多的像素点,必须控制系统的视场角,使拍摄到的虹膜图像不应包含除 眼睛外的其他部位^[10],根据市场调研和设计要求,此系统的全视场角需小于 34°。

4)设计中所使用的波长范围为 832~872 nm 的近红外光,波长范围较短,因此色差不会很大,重点优化 场曲、像散、畸变等像差,因为对精准的虹膜识别来说,畸变要小,像散影响像的清晰度,因此它越小越好。在 具体优化时,根据不同视场的贡献量对权重进行适当调整,最终使光学系统的畸变、像散、场曲等像差满足系 统设计要求,取得光学系统的像差平衡。

3.3 设计结果

经优化后,在工作距离为 320 mm 时的光学系统结构如图 2 所示,具体的结构参数如表 2 所示,归一化 非球面矢高如表 3 所示。

Surface	Туре	Radius /mm	Thickness /mm	Glass	Semi-aperture /mm
Object	Sphere	infinity	320		
1	Asphere	1.354	0.704	APL5514ML	1.087
2	Asphere	4.366	0.1		0.939
Stop	Sphere	infinity	1.086		0.921
4	Asphere	-1147.084	0.344	APL5514ML	0.783
5	Asphere	-60.026	0.383		0.859
6	Asphere	-6.326	0.369	APL5514ML	0.813
7	Asphere	4.340	0.05		1.027
8	Sphere	infinity	0.21	BK7_SCHOTT	1.069
9	Sphere	infinity	0.754		1.092
Image	Sphere	infinity	0		1.217

表 2 系统结构参数 Table 2 System structure parameters

Fig. 2 Structure of lens assembly after optimization

表 3	归一化非球面矢高
-----	----------

sag
sag

Radius	Ashpere 1	Ashpere 2	Ashpere 4	Ashpere 5	Ashpere 6	Ashpere 7
0.1R	0.004655	0.001076	-0.00001	-0.000071	-0.000548	0.001209
0.2R	0.017968	0.004145	-0.000107	-0.000354	-0.002303	0.004213
0.3R	0.040887	0.012311	-0.000538	-0.000751	-0.006026	0.007975
0.4R	0.073027	0.018450	-0.001681	-0.002930	-0.014454	0.010039
0.5R	0.115738	0.028306	-0.004331	-0.006706	-0.026501	0.00819
0.6R	0.168942	0.040344	-0.009451	-0.013776	-0.045875	-0.000406
0.7R	0.234556	0.058413	-0.019178	-0.027119	-0.083173	-0.02035
0.8R	0.312711	0.072779	-0.036110	-0.050437	-0.121403	-0.05565
0.9R	0.404914	0.08805	-0.066757	-0.092196	-0.2141185	-0.114987
R	0.505746	0.099676	-0.121288	-0.161978	-0.350496	-0.207267

由设计结果可以看出,沿光轴方向,按从物面到像面的顺序,依次为具有正光焦度的第1透镜,具有正光 焦度的第2透镜以及具有负光焦度的第3透镜,光阑位于第1透镜与第2透镜之间。3片镜片均采用非球 面,其原因是非球面可以减少镜片个数和系统总长,减轻镜头质量,节省成本,而且还可以减小和平衡像差, 获取高质量的图像^[11]。该光学系统总长为 4.0 mm,视场角为 32.6°。

4 像质评价

根据优化后的结果,从调制传递函数(MTF)、点列图、场曲、畸变和相对照度来评价该光学系统的像质。

4.1 调制传递函数

人眼虹膜面积很小,颜色灰黑,获取细节清晰、高对比度的虹膜图像并不容易,具有高分辨率的镜头才能获取高质量的虹膜图像,系统的成像质量可用调制传递函数来表征。调制传递函数所围面积越大,表明光学系统的信息传递量越多,光学系统的成像质量越好,采集到的图像越清晰^[12]。结合算法需求以及市场产品对调制传递函数的要求,要求在1/2 奈奎斯特频率处,0.8 视场的调制传递函数大于0.4。本实验所用芯片的奈奎斯特频率为 446 lp/mm,在1/2 奈奎斯特频率处,工作距离为 300~350 mm 时,0.8 视场的调制传递函数均大于 0.4,其最佳工作距离为 320 mm。图 3、4、5 分别给出工作距离为 300、320、350 mm 时的调制传递函数曲线图。

4.2 点列图

点列图反映了整个系统成像的几何结构,常用光斑均方根(RMS)直径来量化表示。本设计的点列图如 图 6 所示。

对于该虹膜识别系统,在 0.5 视场内的 RMS 直径在像素单元范围内,该视场范围也是虹膜识别图像中

- 图 4 工作距离为 320 mm 时 1/2 奈奎斯特频率 下的调制传递函数曲线
- Fig. 4 MTF curves at 1/2 Nyquist frequency with the working distance of 320 mm

图 5 工作距离为 350 mm 时 1/2 奈奎斯特频率下的调制传递函数曲线

Fig. 5 MTF curves at 1/2 Nyquist frequency with the working distance of 350 mm

最有用的范围;0.9~1视场的范围为非虹膜识别区域,因此要求相对较低,该系统最外视场的 RMS 直径在 像素单元的 2.2 倍以内,而行业内手机镜头像差校正中允许最外视场 RMS 直径在像素单元的 3 倍以内。

4.3 场曲和畸变

畸变不影响像的清晰度,而与像的变形有关,对一般的光学系统,畸变要求为小于 3%,在此范围内,人 眼感觉不到像的变形^[13]。参考几款虹膜识别镜头专利中畸变的范围为 3%~13%,场曲控制在 0.1~0.2 之 间,本设计中的场曲与畸变图如图 7 所示,场曲在 0.01 以内,光学畸变在 1.2%以内,TV 畸变在 1%以内,符

合设计要求。

4.4 相对照度

相对照度是指视场边缘与中心照度的比值,比值越高边缘越亮。对于虹膜识别镜头而言,相对照度要求 较高。本设计的相对照度曲线如图 8 所示,可以看到相对照度在 87%以上。

由上述不同像质评价方式的结果可得:本设计光学系统的成像质量优良。

图 8 相对照度曲线 Fig. 8 Relative illumination curve

5 公差分析

公差分析是光学系统设计阶段的一项重要内容。理论设计必须与实际生产相结合,才能便于生产制造。 公差分析的实质是结合镜片的实际加工水平给镜片的重要尺寸(如中心厚、偏心等)设定一定的误差允许范 围,提前预估成品镜头的良率,降低企业生产风险。本设计光学系统的部分公差参数设置如表 4 所示,其中, DLR 为半径增量,DLT 为厚度增量,DLN 为折射率增量,DLV 为阿贝系数增量,TRY 为 Y 总体指示偏差 量,BTY 为镜筒 Alpha 倾斜(弧度),DLS 为矢高增量,S1..2 表示第 1 片透镜。

在公差分析中有多种评价方式,如调制传递函数、RMS 波前误差等,最常用为调制传递函数分析,本研究以当前灵敏度进行分析,该镜头的公差灵敏度曲线如图 9 所示。

激光与光电子学进展

表 4 公差参数设置表

Table 4Tolerance parameters setting					
No.	Туре	Value /V	No.	Туре	Value /V
1	DLR S1	0.001	16	TRY S4	0.002
2	DLR S2	0.005	17	BTY S45	0.0015
3	DLR S4	0.005	18	TRY S6	0.002
4	DLR S5	0.005	19	BTY S67	0.001
5	DLR S6	0.005	21	TRY S8	0.002
6	DLR S7	0.005	21	BTY S89	0.005
7	DLT S1	0.001	22	DLN S1	0.002
8	DLT S2	0.001	23	DLV S1	0.008
9	DLT S3	0.001	24	DLN S6	0.005
10	DLT S4	0.001	25	DLV S6	0.008
11	DLT S5	0.001	26	DLN S8	0.002
12	DLT S6	0.001	27	DLS S1	0.004
13	DLT S7	0.003	28	DLS S2	0.004
14	TRY S1	0.002	29	DLS S6	0.002
15	BTYS 12	0.003	30	DLS S7	0.002

图 9 公差分析 Fig. 9 Tolerance analysis

6 结 论

借助 Code V 软件优化设计了一款成像质量好的虹膜识别手机镜头。镜头采用了正正负结构,总体长度较短,便于在手机上集成。设计结果显示:该镜头孔径较大,F 数为 2.0,TV 畸变在 1%以内,相对照度大于 87%,可以达到虹膜识别镜头的技术要求;公差分析结果表明该镜头适合工业加工生产。

参考文献

- Daugman J G. High confidence visual recognition of persons by a test of statistical independence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(11): 1148-1161.
- [2] Liu Yang, Li Xia, Wang Na, et al. An improved iris location algorithm based on sampling to special regions of interesting (ROI)[J]. Acta Photonica Sinica, 2008, 36(6): 1277-1280.

1996-02-15.

- 刘 洋,李 霞,王 娜,等.基于特定感兴趣区采样的虹膜定位改进算法[J].光子学报,2008,36(6):1277-1280. [3] Wildes R, Asmuth J, Hsu S, *et al.* Automated, non-invasive iris recognition system and method: US, 5572596[P].
- [4] 谭铁牛,孙哲南,董文博.自动对焦的远距离虹膜图像获取装置、方法和识别系统:中国,CN101814129[P].2009-02-19.
- [5] Wang Mingwei. Iris image acquisition method based on bilateral telecentric lens[D]. Shenyang: Shenyang University of Technology, 2016.

王明威.基于双远心镜头的虹膜图像采集方法[D].沈阳:沈阳工业大学,2016.

- [6] He Yuqing, Liu Feihu, Feng Guangqin, et al. Near infrared face and iris fusion algorithm based on support vector machine[J]. Acta Photonica Sinica, 2010, 39(s1): 1-5.
- 何玉青,刘飞虎,冯光琴,等. 基于支持向量机的近红外人脸与虹膜融合算法[J]. 光子学报, 2010, 39(s1): 1-5. [7] Xue Leitao, Lin Feng. Design of thin and wide-angle lens for 8 mega-pixel mobile phone camera [J]. Laser &
- Optoelectronics Progress, 2015, 52(10): 102204. 薛雷涛,林 峰. 800万像素超薄广角手机镜头设计[J]. 激光与光子学进展, 2015, 52(10): 102204.
- [8] Li Jijun, Du Yungang, Zhang Lihua, et al. Research progress on CMOS image sensors [J]. Laser & Optoelectronics Progress, 2009, 46(4): 45-51.
 李继军, 杜云刚, 张丽华, 等. CMOS 图像传感器的研究进展[J]. 激光与光电子学进展, 2009, 46(4): 45-51.
- [9] Xin Qiming. Manufacturing technology of plasma aspheric lens [M]. Beijing: National Defense Industry Press, 2005: 51-52.

辛企明.光学塑料非球面制造技术[M].北京:国防工业出版社,2005:51-52.

- [10] 王立君, 徐中宇, 孙秋成. 人体虹膜图像信息处理与识别技术[M]. 北京: 中国水利水电出版社, 2014: 4.
- [11] Dong Jianing, Mou Da, Xu Chunyun, *et al.* Projection optical system design of infrared scene simulator based on DMD
 [J]. Laser & Optoelectronics Progress, 2012, 49(12): 122202.
 董家宁, 牟 达, 徐春云, 等. 基于 DMD 的红外景象模拟投影光学系统设计[J]. 激光与光电子学进展, 2012, 49 (12); 122202.
- [12] Liu Yali, Wang Min, Huang Muwang. Iris identification optical lens of high precision [J]. Journal of Applied Optics, 2012, 33(3): 575-579.

刘雅丽,王 敏,黄木旺.高精度虹膜识别光学镜头的研制[J].应用光学,2012,33(3):575-579.

[13] Zhu Jiawei, Ding Guilin. Design of an ultra-small wide-angle medical endoscope lens [J]. Laser & Optoelectronics Progress, 2014, 51(9): 092201.

朱佳巍,丁桂林. 一款超小型广角医用内窥镜镜头的设计[J]. 激光与光电子学进展, 2014, 51(9): 092201.