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Abstract Ti-6Al-4V is a benchmark Ti alloy.  Laser wire additive manufacturing (LWAM) offers advanced 
manufacturing capability to the alloy for applications possibly including exploration of outer space.  As a typical 
multiple-variable process, LWAM is complex, which, however, can be analyzed, predicated or even optimized by 
artificial intelligence (AI) methods such as machine learning (ML).  In this study, printing parameters of the Ti-6Al-
4V is firstly optimized using single-track-single-layer experiments, and then single-track-multiple-layer samples are 
printed, whose properties in terms of hardness and compressive strength are analyzed subsequently by both 
experiments and ML.  The two ML approaches, artificial neural network (ANN) and support vector machine (SVM), 
are employed to predict the experimental results, whose coefficients of determination R2 show good values.  Further 
optimized properties are realized by adopting genetic algorithm (GA) and simulated annealing (SA) approaches, 
which contribute to high mechanical properties achieved, for instance, an engineering compressive strength of about 
1694 MPa.  The results here indicate that important mechanical properties of the LWAM -prepared Ti alloys can be 
well predicted and enhanced using suitable ML approaches.
Key words laser technique; laser wire additive manufacturing (LWAM); Ti-6Al-4V; machine learning; mechanical 
properties; support vector machine (SVM); artificial neural network (ANN)
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1　Introduction
Ti-6Al-4V is a benchmark Ti alloy， being widely 

used in many industries including aerospace 
engineering， biomedical engineering and chemical 
engineering［1-2］.  However， conventional manufacturing 
of the Ti-6Al-4V alloy is not easy， while additive 
manufacturing （AM） and three-dimensional （3D） 
printing offers superior capability to its 
manufacturing［3-4］.  Among the various AM approaches， 

wire-fed directed energy deposition （DED） of Ti-6Al-
4V， such as based on laser， i. e. ， laser wire additive 
manufacturing     （LWAM），     has     a     few    unique 
advantages［5-7］： 1） the printing speed can be a few times 
faster than， e. g.， the selective laser melting （SLM） 
AM； 2） raw material for the LWAM can be more cost 
affordable than the powder-bed based AM approaches； 
3） using metal wire rather than loose powder as 
feedstock， LWAM maybe one day becomes a feasible 
methodology to produce useful parts for outer space 
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exploration， e. g. ， the moon.
In regard of LWAM， Mok et al. ［8］ studied the 

effects of wire feeding direction on deposition 
efficiency， along with other affecting parameters.  It has 
been confirmed that a high deposition rate and good 
deposition quality can be realized by using LWAM.  
Li［9］ and Du［10］ studied the influencing factors for 
LWAM-prepared Ti-6Al-4V alloy； good printed parts 
have been achieved thereby.  Li［11］ designed an optical 
coaxial printing head， which facilitated adjustment of 
focal position of the used annular laser beam， led to 
coaxial coupling between the laser beam and the metal 
wire， and achieved good printing results in the end.

On the other hand， laser-based printing， including 
LWAM， is a typical multiple-variable process， making 
experimental explorations tedious and often not 
conclusive.  In recent years， machine learning （ML） 
approaches have been widely adopted to facilitate 
understanding real world problems including the AM&
3D printing process［12-14］.  In general， although with 
shortcomings such as large initial data input and often 
unclear mathematical relationship between input and 
output， it is still a powerful technology that 
automatically extracts and analyzes features from 
existing data， establishes relationship model between 
inputs and outputs， and provides inference for 
predicting new data.

To date， SVM and ANN are among the most 
commonly used ML algorithms［15-16］.  The former aims 
to generate the most suitable decision limit or 
boundary，   i. e.，   the   so-called   hyperplane，   which 
divides the n-dimensional space into various categories， 
making it easy to place different points in each 
category.  It has been applied in image classification， 
text classification， and other fields［17］.  The latter is to 
create a machine that can work like the human brain 
which can “think”.  It normally consists of multiple 
layers： an input layer as the raw data access， hidden 
layers for feature extracting and processing， and an 
output layer in which the final results are obtained.  
Before ANN can be fully functionalized， it must be 
trained， while the most common algorithm is the back 
propagation［18］.

Examples of ANN and SVM for AM&3D printing 
can be noted as follows.  Jia et al. ［19］ used the ANN 
algorithm to establish relationship between printing 
parameters of SLM and mechanical properties； they 
also optimized the parameters using genetic algorithms 
（GAs） in order to prepare samples with high size 

accuracy and good mechanical properties.  For selective 
laser sintering （SLS） ， Ma et al.［20］ established a multi-
objective optimization model based on energy 
consumption， material cost and machine constraints， 
where the SLS energy consumption framework was 
optimized using the non-dominated sorting genetic 
algorithm-Ⅱ  （NSGA-II）.   For  laser  directed   energy 
deposition （LDED）， Singh et al. ［21］ studied the 
relationship among printing factors such as powder 
feeding rate and powder deposition efficiency， using 
multiple algorithms such as multi-objective particle 
swarm optimization.  Aboutaleb et al. ［22］ developed a 
method for systematically optimizing mechanical 
properties of laser additive manufactured parts by using 
minimum energy design principle.

From existing literature， it is noted that for 
multiple-variable process such as AM， ML approaches 
are capable to create the relationship between printing 
parameters and part properties， and in turn， ultimately 
optimize the printing parameters to improve the 
performance of the printed products.  In particular， wire-

fed laser based AM approaches such as LWAM just 
emerge and they are far from mature， and there are 
short of reliable case studies.  The present study is 
therefore designed to provide valuable insights into the 
area， incorporating ML in LWAM experiments.  The 
results will show that after collecting data from single-

track-multiple-layer experiments， ML approaches 
including SVM and ANN are capable to eventually 
provide predictions with high accuracy in terms of 
hardness and compressive strength.

2　Experimental and machine learning 
study

2.1　Materials and laser wire additive manufacturing
Wire of Ti-6Al-4V （∅ 1.2 mm） was used as the 

raw material， whose chemical composition is shown in 
Table 1.  The building substrate was Ti-6Al-4V plate 
too， with dimensions of 130 mm×130 mm×12 mm.

The LWAM system was self designed ［Fig. 1（a）］， 
using a CoaxPrinter high-performance laser head 
produced by Precitec in Germany， whose wavelength 

Table 1　Composition of the Ti-6Al-4V wire used in the study
unit:%

Element

Mass fraction

Al

6.03

V

3.98

Fe

0.16

C

0.011

O

0.12

N

0.014

H

0.002

ranged from 900 to 1080 nm and generated circular 
laser beam.  As shown in Fig. 1（b）， the Ti-6Al-4V 
wire and the laser beam were co-axial with each other.  

During experiments， different laser powers， feeding 
speeds， scanning speeds and height distances had been 
studied （see Table 2 for the parameters adopted）.

2.2　Microstructure characterization and 
mechanical property testing

Microstructures of the as-printed samples were 
examined mainly using a field-emission scanning 
electron microscope （SEM， Zeiss Merlin， Germany） 
equipped with an EDAX VelocityTM electron backscatter 
diffraction （EBSD） camera （Ametek， USA）.  Vickers 
hardness was conducted using hardness tester （HXD-

1000TMC， Shanghai Taiming Optical Instrument 
Corporation， China）， with a load of 9.807 N and a 
loading time of 15 s； nine positions were tested for each 
sample， and the corresponding averaged value was 
used.  Compressive test was conducted using an 
LE5105 electronic universal testing machine.  Three 
cylindrical samples （ ∅ 3 mm×6 mm） were tested， 
whose values were then averaged and used.
2.3　ML procedure and overall research flowchart
2.3.1　ANN algorithm

The ANN algorithm has been operated in the 
following way［15-16，23］.  A reverse parameter adjustment 
method was adopted for the ANN process.  A ReLU 
activation function and a gradient descent method were 
used in the back propagation parameter adjustment.  
Herein， the activation function adjusts linear data 

relationship to nonlinear data relationship， thereby 
achieving the effect of simulating nonlinear complex 
function models， while the purpose of the training is to 
continuously adjust the initial weights to minimize the 
error between the predicted output value and the 
expected value.
2.3.2　SVM algorithm

The SVM algorithm has been operated in the 
following way［15-16，23］.  Gaussian kernel function is 
selected for the SVM operation， whose function is 
written as

K ( x，y )= exp (- ||x - y||2

2γ2 )，γ > 0， （1）

where x means input， y means output， and γ means the 
Gaussian kernel width.

It is necessary to determine the parameters， i. e. ， 
Gaussian kernel width and penalty factor， in the model.  
This study used cross validation and grid search 
methods to determine these two hyperparameters.
2.3.3　Genetic algorithm optimization

To operate the GA prediction and optimization， 
we have firstly defined an objective function Q， as 
follows， while GA is to provide near optimal solutions 
for optimizing the objective or fitness function of the 
defined problem［23-24］：

Q = w 1Y 1 + w 2Y 2， （2）
where Y1 and Y2 are the two targets corresponding to 
hardness and compressive strength， respectively， and 
w1 and w2 are corresponding weight ratios.

Considering that both hardness and compressive 
strength are important performance indicators， here w1 

Fig.  1　Experimental setup.  (a) Schematic graph of the LWAM; (b) coaxial design of the laser head

Table 2　Parameters for the LWAM experiments
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ranged from 900 to 1080 nm and generated circular 
laser beam.  As shown in Fig. 1（b）， the Ti-6Al-4V 
wire and the laser beam were co-axial with each other.  

During experiments， different laser powers， feeding 
speeds， scanning speeds and height distances had been 
studied （see Table 2 for the parameters adopted）.

2.2　Microstructure characterization and 
mechanical property testing

Microstructures of the as-printed samples were 
examined mainly using a field-emission scanning 
electron microscope （SEM， Zeiss Merlin， Germany） 
equipped with an EDAX VelocityTM electron backscatter 
diffraction （EBSD） camera （Ametek， USA）.  Vickers 
hardness was conducted using hardness tester （HXD-

1000TMC， Shanghai Taiming Optical Instrument 
Corporation， China）， with a load of 9.807 N and a 
loading time of 15 s； nine positions were tested for each 
sample， and the corresponding averaged value was 
used.  Compressive test was conducted using an 
LE5105 electronic universal testing machine.  Three 
cylindrical samples （ ∅ 3 mm×6 mm） were tested， 
whose values were then averaged and used.
2.3　ML procedure and overall research flowchart
2.3.1　ANN algorithm

The ANN algorithm has been operated in the 
following way［15-16，23］.  A reverse parameter adjustment 
method was adopted for the ANN process.  A ReLU 
activation function and a gradient descent method were 
used in the back propagation parameter adjustment.  
Herein， the activation function adjusts linear data 

relationship to nonlinear data relationship， thereby 
achieving the effect of simulating nonlinear complex 
function models， while the purpose of the training is to 
continuously adjust the initial weights to minimize the 
error between the predicted output value and the 
expected value.
2.3.2　SVM algorithm

The SVM algorithm has been operated in the 
following way［15-16，23］.  Gaussian kernel function is 
selected for the SVM operation， whose function is 
written as

K ( x，y )= exp (- ||x - y||2

2γ2 )，γ > 0， （1）

where x means input， y means output， and γ means the 
Gaussian kernel width.

It is necessary to determine the parameters， i. e. ， 
Gaussian kernel width and penalty factor， in the model.  
This study used cross validation and grid search 
methods to determine these two hyperparameters.
2.3.3　Genetic algorithm optimization

To operate the GA prediction and optimization， 
we have firstly defined an objective function Q， as 
follows， while GA is to provide near optimal solutions 
for optimizing the objective or fitness function of the 
defined problem［23-24］：

Q = w 1Y 1 + w 2Y 2， （2）
where Y1 and Y2 are the two targets corresponding to 
hardness and compressive strength， respectively， and 
w1 and w2 are corresponding weight ratios.

Considering that both hardness and compressive 
strength are important performance indicators， here w1 

Fig.  1　Experimental setup.  (a) Schematic graph of the LWAM; (b) coaxial design of the laser head

Table 2　Parameters for the LWAM experiments

Parameter

Laser power P /W

Feeding speed vf /（mm·min-1）

Scanning speed vs /（mm·min-1）

Height distance /mm

Value

1800‒2400

450‒600

40‒50

1.1‒1.5

Step

200

50

10

0.2
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and w2 are both set to 1， and the above function can be 
rewritten as

Q = Y 1 + Y 2. （3）
To start the GA simulation， initialization setting 

needs to be done.  Commonly used parameters are set 
according to the following experience， and they were 
selected as shown in Table 3［23-24］： 1）N， the population 
size， ranging from 30 to 100； 2）T， the number of 
iterations for calculation ， ranging from 100 to 500 ； 
3） Pc， crossover probability， ranging from 0.4 to 0.99； 
4） Pm， mutation probability， ranging from 0.0001 
to 0.1.
2.3.4　Simulated annealing algorithm optimization

The simulated annealing （SA） algorithm is an 
algorithm for finding the minimum energy status from 

various options； the purpose is to prevent getting stuck 
in poor solutions relating to local optima of the fitness 
function［23，25］.  Before starting the SA algorithm， the 
parameters that need to be set include the starting 
temperature Tb， ending temperature Te， maximum 
number of iterations n， and probability coefficient s1 for 
accepting the different solutions［23，25］ （see Table 4）.  
The initial state is obtained from the process interval 
using a random function， and the search boundary is 
specified as the entire process interval of the 
experiment.

2.3.5　Overall research flowchart
The overall research flowchart for the current 

study is planned as follows （see Fig. 2）.  Firstly， 
single-track-single-layer experiments will be conducted， 
through which optimal printing parameters are 
determined.  Secondly， single-track-multiple-layer 

samples will be printed using determined optimal 
parameters.  Bulk samples will be therefore analyzed 
in terms of their compressive strength and hardness.  
The two mechanical properties will be used as 
experimental output， while printing parameters will 
be used as input， for the following SVM and ANN 

Table 3　Parameters for the GA optimization

Population 
size N

40

Iteration 
number T

100

Crossover 
probability Pc

0.6

Mutation 
probability Pm

0.001

Table 4　Parameters for the SA algorithm

Initial temperature Tb /℃

100

Ending temperature Te /℃

1

Maximum iteration number n

2000

Probability coefficient of accepting 
difference solutions s1

exp [ -( ΔE ) /T ]

Fig.  2　Overall flowchart of the current study
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predictions.  Two other algorithms， i. e.， GA and 
SA ， will be used to predict the best printing 
parameters for SVM ， based on which further 
improved properties can be expected.  The predictions 
made by the ML approaches will be cross-checked by 
experimental results.  In the end ， comparison 
between ANN and SVM will be briefly discussed as 
well.

3　Results
3.1　LWAM printing， experimental data and 

microstructural analysis
3.1.1　Single-track-single-layer printing

During single-track printing， a suitable laser 
energy is required， which should be able to melt the 
wire and generate interface bonding between molten 

droplets and the substrate.  Figure 3 shows a snapshot 
of the deposition process and an optical microscope 
（OM） image of an as-printed single track.  For 
printing parameters optimization， a coefficient， λ， 
has been defined and used in evaluation ， i. e. ， λ =
H/W ， where H is the height of the track and W  is 
the width.  If the λ value is too small， it is not easy 
to complete the printing process and it possibly causes 
waste of feedstock material.  If the λ value is too 
large， then the molten droplets from the subsequent 
building layer may flow downwards along the curved 
surface， possibly causing the whole sample to 
collapse.  Referring to literature［8-11］ and from our own 
experience， the suitable λ value ranges between 0.40‒
0.65， and it will be discussed in the following 
section.

In subsequence， different laser powers， feeding 
speeds and scanning speeds were adopted， and the 
corresponding λ values were recorded and compared.  
The results are shown in Figs. 4（a）‒ 4（f）.  The main 
results are described as follows.

1） As shown in Figs. 4（a） and 4（b）， as the laser 
power increases within the range of 1800 ‒ 2400 W， 
the width W  increases correspondingly， from 373 to 

452 μm， while the height H gradually decreases from 
213 to 165 μm.  The corresponding λ value is between 
0.40 and 0.48， falling in the suitable range as 
aforementioned.  If the laser power is lower than 1800 W， 
the λ value will be less than 0.40 according to the trend 
observed.

2） As shown in Figs. 4（c） and 4（d）， when the 
scanning speed increases from 30 to 50 mm/min， the 

Fig.  3　 Deposition process in the single-track-single-layer printing and illustration of the coefficient λ.  (a) Snapshot of the deposition 
process; (b) OM image of the as-printed single track; (c) illustration of a suitable λ value; (d) illustration of an overshoot λ case
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width W  drops from 453 to 405 μm， and the height H 
drops from 295 to 203 μm.  The reason for the lowered 
W  and H is a decreased energy input.  The 
corresponding λ value is ~0.50‒0.65.

3） As shown in Figs. 4（e） and 4（f）， when the 
wire feeding speed increases but the energy input is 
kept unchanged， the width W  increases from 152 to 
207 μ m ， and the height H increases from 355 to 
431 μm.  The corresponding λ value ranges from 0.42 to 

0.48.  Too low feeding speed ， however ， such as 
350 mm/min， will lead to a λ value of less than 0.40， 
whose details are omitted here.

4） After a series of experiments as shown in the 
figures， the process window for printing the Ti-6Al-4V 
wire has been determined as follows.  The range of laser 
power P is 1600 ‒ 2400 W， the range of wire feeding 
speed vf is 350‒600 mm/min， and the range of scanning 
speed vs is 30‒50 mm/min.

3.1.2　Single-track-multiple-layer printing
After optimizing single-track printing， single-track-

multiple-layer samples ［see Fig. 5（a）］ were built in the 

following way.  Firstly， a definition of vertical overlap 
has been proposed， which is η（=H0/H） and is illustrated 
in Fig. 5（b）.  A suitable η ensures that height and width 

Fig.  4　Experimental results for different printing parameters.  (a) Change of H and W  with laser power and (b) the corresponding λ ; 
(c) change of H and W  with scanning speed and (d) the corresponding λ; (e) change of H and W  with feeding speed and (f) the 

corresponding λ

of the printed samples remain basically unchanged， and 
thin-walled parts can be printed smoothly subsequently.  
If the η value is too large， the overlap area between the 
two layers increases， and the width of the layers 
widens， causing a slowly increased height and a low 
deposition efficiency.  If the η value is too small， the 
size of the thin-walled parts may change violently as the 

number of layers increases， possibly leading to a bad 
geometry accuracy.  From literature［3］ as well as our 
own experience， when the η value is close to 1/3， the 
overlap between layers is appropriate.  By using such an 
η value， good single-track-multiple-layer samples in the 
form of bulk tube have been printed ［see Figs. 5（c） 
and 5（d）］.

A brief analysis of the as-printed microstructure is 
shown in Fig. 6.  Figures 6（a）‒6（d） are SEM secondary 
electron images with different magnifications， whose 
EBSD reverse pole figure is shown in Fig. 6（e）.  It is 
noted that the microstructural feature of the as-printed 
Ti-6Al-4V is a mixture of acicular phases （major 
phase）， and a small amount of lath phases.  The 
former should be the martensite α' phase［3，26］， while 
the latter should be the β‑Ti phase.  Such 
microstructure is typical to many other laser printed Ti 
materials［3，26］.  Meantime， it is noticed that there are 
virtually no pores in the as-printed samples， suggesting 
that the optimized parameters are good in terms of 
achieving high relative density and a pore-free 
microstructure.

3.1.3　Collection of the results data for the as-printed 
Ti-6Al-4V

By following the previously determined printing 
parameters， in total 96 samples have been printed.  The 
corresponding experimental data have been collected for 
the following ML processing.  Part of the results are 
shown in Table 5， with the whole data provided in the 
Appendix Table A1.
3.2　ML for data regression and prediction
3.2.1　ML by the ANN approach

In this study， for the ANN to operate， the total 
96 sets of printing parameters and corresponding 
mechanical properties are randomly divided into two 
groups， with 76 as the training group and 20 as the 
test group.  Meantime， the four major printing 

Fig.  5　LWAM printing results and images.  (a) Single beam and multiple layers; (b) illustration of the vertical heights (H and H0);
(c) side view of as-printed tube; (d) top view of as-printed tube
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of the printed samples remain basically unchanged， and 
thin-walled parts can be printed smoothly subsequently.  
If the η value is too large， the overlap area between the 
two layers increases， and the width of the layers 
widens， causing a slowly increased height and a low 
deposition efficiency.  If the η value is too small， the 
size of the thin-walled parts may change violently as the 

number of layers increases， possibly leading to a bad 
geometry accuracy.  From literature［3］ as well as our 
own experience， when the η value is close to 1/3， the 
overlap between layers is appropriate.  By using such an 
η value， good single-track-multiple-layer samples in the 
form of bulk tube have been printed ［see Figs. 5（c） 
and 5（d）］.

A brief analysis of the as-printed microstructure is 
shown in Fig. 6.  Figures 6（a）‒6（d） are SEM secondary 
electron images with different magnifications， whose 
EBSD reverse pole figure is shown in Fig. 6（e）.  It is 
noted that the microstructural feature of the as-printed 
Ti-6Al-4V is a mixture of acicular phases （major 
phase）， and a small amount of lath phases.  The 
former should be the martensite α' phase［3，26］， while 
the latter should be the β‑Ti phase.  Such 
microstructure is typical to many other laser printed Ti 
materials［3，26］.  Meantime， it is noticed that there are 
virtually no pores in the as-printed samples， suggesting 
that the optimized parameters are good in terms of 
achieving high relative density and a pore-free 
microstructure.

3.1.3　Collection of the results data for the as-printed 
Ti-6Al-4V

By following the previously determined printing 
parameters， in total 96 samples have been printed.  The 
corresponding experimental data have been collected for 
the following ML processing.  Part of the results are 
shown in Table 5， with the whole data provided in the 
Appendix Table A1.
3.2　ML for data regression and prediction
3.2.1　ML by the ANN approach

In this study， for the ANN to operate， the total 
96 sets of printing parameters and corresponding 
mechanical properties are randomly divided into two 
groups， with 76 as the training group and 20 as the 
test group.  Meantime， the four major printing 

Fig.  5　LWAM printing results and images.  (a) Single beam and multiple layers; (b) illustration of the vertical heights (H and H0);
(c) side view of as-printed tube; (d) top view of as-printed tube
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parameters， namely the laser power， wire feeding 
speed， scanning speed and overlap height， are used as 
inputs； the hardness and compressive strength are 
used as outputs.  The ML performances are shown in 

Figs.  7 and 8.
From Fig. 7， it is noted that when using the ANN 

to regress the hardness values， the corresponding R2， 
i. e.，  the   coefficient   of   determination，  has   been 

Fig.  6　Analysis of the as-printed microstructure.  (a)‒(d) SEM images of the as-printed Ti-6Al-4V at different magnifications;
(e) EBSD reverse pole figure image
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Fig.  7　Prediction results of the ANN model for hardness of as-printed samples.  (a),(b) Experimental values, predicted values and the 
corresponding R2 based on the training set; (c),(d) experimental values, predicted values and the corresponding R2 based on the 

test set

Table 5　Parameters and experimental results for the LWAM-prepared Ti-6Al-4V

No.

1
2
3
4
5
6
7
8
9

10
︙

92
93
94
95
96

Laser
power /W

2400
2400
2400
2400
2400
2400
2400
2400
2400
2400

1800
1800
1800
1800
1800

Feeding speed /
（mm·min-1）

600
600
600
550
550
550
500
500
500
450

500
500
450
450
450

Scanning speed /
（mm·min-1）

40
40
40
40
40
40
40
40
40
40

45
45
45
45
45

Overlap
height /mm

1. 1
1. 3
1. 5
1. 1
1. 3
1. 5
1. 1
1. 3
1. 5
1. 1

1. 3
1. 5
1. 1
1. 3
1. 5

Hardness /
HV

366. 41
365. 27
371. 95
368. 42
370. 45
379. 46
367. 61
373. 60
381. 38
368. 66

371. 86
366. 64
379. 16
373. 34
366. 34

Compressive
strength /MPa

1575. 06
1523. 20
1510. 81
1609. 14
1528. 00
1516. 20
1602. 75
1542. 48
1569. 38
1592. 64

1629. 28
1644. 83
1594. 66
1623. 75
1658. 86
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determined as 0.963 for the training set， and 0.898 for 
the test set.  Meantime， the corresponding root-mean-

square error （RMSE） is 1.018 for the training set， and 
it is 1.647 for the test set.  The regressions for the test 
set are good， indicating strong capability of the ANN 
approach used to handle the experimental data 
obtained.

Similarly， Fig. 8 provides the compressive strength 
results and the corresponding ANN simulations.  It 
indicates that R2 is 0.959 for the training set， and 
0.739 for the test set.  Meantime， RMSE of the 
training set is 9.480， and it is 20.620 for the test data.  
Generally speaking ， the model for the compressive 
strength does not perform as well as for the 

hardness.
3.2.2　ML by the SVM approach

Aside from the ANN processing， experimental 
results are analyzed using the SVM ML as well.  
Figures 9 and 10 are the corresponding results for the 
hardness and compressive strength， respectively.  
These figures indicate that： 1） for the hardness 
property， SVM achieves an R2 value of 0.986 and an 
RMSE value of 0.632 for the training set， and 0.944 
and 1.220 for the test set； 2） for the compressive 
strength， SVM achieves an R2 value of 0.988 and an 
RMSE value of 5.051 for the training set， and 0.833 
and 13.480 for the test set.  Compared with the ANN 
approach， SVM presents a better capability in terms of 

Fig.  8　 Prediction results of the ANN model for compressive strength of as-printed samples.  (a), (b) Experimental values, predicted 
values and the corresponding R2 based on the training set; (c), (d) experimental values, predicted values and the corresponding 

R2 based on the test set

data regression and prediction using the total 96 
experimental datasets.
3.3　ML optimization using GA and SA approaches
3.3.1　Optimization based on the GA approach

By selecting parameters shown in Table 3， the GA 
model has been run， and the results are shown in 
Fig. 11.  From Fig. 11， one can note that the GA model 
converges around the 14th generation， and the optimal 
printing parameters predicted are： laser power P=
1983.26 W， wire feeding speed vf=458.63 mm/min， 
scanning speed vs=40.48 mm/min， and height distance 
1.31 mm.  To feed the optimized parameters into the 
previously determined SVM model， predicted values of 

hardness and compressive strength are realized.  The 
results are listed in Table 6， together with those 
determined from real experiments for comparison.  
From the table， it is noticed that the predicted values 
match well with the experimental values.  Meantime， 
both the predicted and the actual results are among the 
best properties in comparison with the data in Table 5， 
suggesting the capability of the GA algorithm in 
forecasting optimized parameters for the LWAM 
experiments.
3.3.2　Optimization based on the SA approach

Regarding the SA approach， the optimization 
process is shown in Fig.  12.  The corresponding 

Fig.  9　Prediction results of the SVM model for hardness of as-printed samples.  (a), (b) Experimental values, predicted values and the 
corresponding R2 based on the training set; (c), (d) experimental values, predicted values and the corresponding R2 based on the 

test set
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data regression and prediction using the total 96 
experimental datasets.
3.3　ML optimization using GA and SA approaches
3.3.1　Optimization based on the GA approach

By selecting parameters shown in Table 3， the GA 
model has been run， and the results are shown in 
Fig. 11.  From Fig. 11， one can note that the GA model 
converges around the 14th generation， and the optimal 
printing parameters predicted are： laser power P=
1983.26 W， wire feeding speed vf=458.63 mm/min， 
scanning speed vs=40.48 mm/min， and height distance 
1.31 mm.  To feed the optimized parameters into the 
previously determined SVM model， predicted values of 

hardness and compressive strength are realized.  The 
results are listed in Table 6， together with those 
determined from real experiments for comparison.  
From the table， it is noticed that the predicted values 
match well with the experimental values.  Meantime， 
both the predicted and the actual results are among the 
best properties in comparison with the data in Table 5， 
suggesting the capability of the GA algorithm in 
forecasting optimized parameters for the LWAM 
experiments.
3.3.2　Optimization based on the SA approach

Regarding the SA approach， the optimization 
process is shown in Fig.  12.  The corresponding 

Fig.  9　Prediction results of the SVM model for hardness of as-printed samples.  (a), (b) Experimental values, predicted values and the 
corresponding R2 based on the training set; (c), (d) experimental values, predicted values and the corresponding R2 based on the 

test set
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optimized parameters are： laser power P=1847.95 W， 
wire feeding speed vf=467.01 mm/min， scanning 
speed vs=45.48 mm/min， and height distance 1.43 
mm.  By following a similar route as the GA approach， 
predictions have been made， and the values of hardness 
and compressive strength are determined.  The results 
are listed in Table 7， together with those obtained from 
real experiments for comparison.  From the table， it is 
noticed that the predicted values match well with the 
experimental values.  Meantime， the predicted and 
actual results here are slightly worse than those 
predicted using the GA approach.

Fig.  10　 Prediction results of the SVM model for compressive strength of as-printed samples.  (a), (b) Experimental values, predicted 
values and the corresponding R2 based on the training set; (c),(d) experimental values, predicted values and the corresponding 

R2 based on the test set

Fig.  11　 Objective function curves obtained using the GA 
approach
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4　General discussion
In this study， algorithms of the ANN and SVM 

have been employed to regress performances of the as-

printed Ti-6Al-4V prepared using LWAM， in terms of 
the hardness and compressive strength.  Table 8 
summarizes the effectiveness of these predictions 
achieved by our study， and those achieved by a few 
other studies［27-29］.  It is shown that the regressions made 
by our study are with comparable accuracy with those 
published results.  It indicates that the ANN and SVM 
algorithms can be used to study LWAM-prepared Ti 

materials like the Ti-6Al-4V alloy， whose further 
improvement in terms of prediction accuracy should be 
possible with increased number of experimental inputs.  
Future studies can also include application of 
interpretable  models  like， e.g.， SISSO， to  solve  the 
LWAM of metal materials， which are capable to 
provide direct mathematical relationships between 
experimental input and output properties［30］.  Meantime， 
it is also noted that SVM shows a slightly better 
predication capability.  This is due to the fact that ANN 
is often applied to a large amount of experimental data， 
while SVM is more suitable for a small amount of input 

Fig.  12　Objective function curve of the SA algorithm

Table 7　Comparison between simulation results and actual measurement results using SA

Laser 
power /W

1848

Feeding speed /
（mm·min-1）

467

Scanning speed /
（mm·min-1）

45

Overlap 
height /mm

1.4

Hardness /HV

Actual

379.39

Predicted

377.26

Compressive strength /MPa

Actual

1681.27

Predicted

1687.45

Table 8　Regression results from literature[27-29] and the current study

Alloy

Ti-6Al-4V powder， SLM

Ti-6Al-4V wire， LWAM

Ti-6Al-4V powder， SLM

Ti-6Al-4V wire， LWAM

Ti-6Al-4V wire， LWAM

Target
Relative density

surface roughness
Bead wight
Bead height

Fusion zone depth
Fusion zone area
Relative density

Hardness
Compressive strength

Hardness
Compressive strength

ML method used

Supervised deep neural network

Multi-modality CNN

Gaussian process regression models

ANN

SVM

R2

0.99

0.91
0.94
0.86
0.97
0.99

0.989
0.739
0.944
0.833

RMSE

—

—

—

1.647
20.620
1.220

13.480

Ref.

27

28

29

This study

This study

Table 6　Predicted results using the GA algorithm and actual results

Laser 
power /W

1983

Feeding speed /
（mm·min-1）

459

Scanning speed /
（mm·min-1）

40

Height 
distance /mm

1.3

Hardness /HV

Actual

382.42

Predicted

384.91

Compressive strength /MPa

Actual

1694.15

Predicted

1700.15
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data； people have also proposed that it may be also due 
to the too strong learning ability of the ANN approach， 
which， however， in turn， cannot reflect the hidden 
rules and may ultimately lead to a weakened prediction 
ability［31］.

5　Conclusions
In this study， LWAM of the Ti-6Al-4V alloy wire 

has been studied， in both experimental and simulation 
ways.  The relationship between processing parameters 
and mechanical properties is regressed using ANN and 
SVM.  The most important findings are summarized as 
follows.

Single-track-multiple-layer samples have been 
printed using LWAM， after optimization from single-

track-single-layer experiments.  The samples show high 
relative density up to nearly 100% with virtually no 
pores in their microstructure.  Compressive strength 
higher than 1600 MPa and microhardness higher than 
380 HV have been achieved by the as-printed bulk 
samples.

Printing parameters as input and mechanical 
properties as output are fed to the ANN and SVM 
models for regression and prediction.  Results show that 
the two ML models exhibit good regression capabilities 
with high values of the coefficient of 
determination （R2）.

Predictions made by the GA and SA approaches 
have resulted in further improved hardness and 
compressive strength， which agree well with the 
experimental determination and show their capability to 
optimize properties of the LWAM-prepared Ti alloys.
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Table A1 Parameters and experimental results for the LWAM‑prepared Ti‑6Al‑4V
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8
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24
25
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28
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500
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600
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40
40
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40
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40
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1.5
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1.3
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1.1
1.3
1.5
1.1
1.3
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1.1
1.3
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1.1
1.3
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366.57
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1683.82
1626.26
1589.88
1674.84
1651.67
1644.84
1623.72
1647.49
1554.72
1651.67
1676.99

No. Laser
power /W

Feeding speed/
（mm·min-1）

Scanning speed /
（mm·min-1）

Overlap height /
mm

Hardness /
HV

Compressive
strength /MPa



0402305-15

特邀论文 第  51 卷  第  4 期/2024 年  2 月/中国激光

Ti-6Al-4V alloy by laser wire feeding printing technique[D]. 
Shenzhen: Southern University of Science and Technology, 2023.

[24] Goldberg D E, Holland J H. Genetic algorithms and machine 
learning[J]. Machine Learning, 1988, 3: 95-99.

[25] Rere L M R, Fanany M I, Arymurthy A M. Simulated annealing 
algorithm for deep learning[J]. Procedia Computer Science, 2015, 
72: 137-144.

[26] Dong Y P, Li Y L, Zhou S Y, et al. Cost-affordable Ti-6Al-4V 
for additive manufacturing: powder modification, compositional 
modulation and laser in situ alloying[J]. Additive Manufacturing, 
2021, 37: 101699.

[27] Park H S, Nguyen D S, Le-Hong T, et al. Machine learning-

based optimization of process parameters in selective laser melting 
for biomedical applications[J]. Journal of Intelligent 
Manufacturing, 2022, 33(6): 1843-1858.

[28] Jamnikar N D, Liu S, Brice C, et al. In-process comprehensive 
prediction of bead geometry for laser wire-feed DED system using 
molten pool sensing data and multi-modality CNN[J]. The 
International Journal of Advanced Manufacturing Technology, 
2022, 121(1): 903-917.

[29] Maitra V, Shi J, Lu C Y. Robust prediction and validation of as-

built density of Ti-6Al-4V parts manufactured via selective laser 
melting using a machine learning approach[J]. Journal of 
Manufacturing Processes, 2022, 78: 183-201.

[30] Dean J, Scheffler M, Purcell T A R, et al. Interpretable machine 
learning for materials design[J]. Journal of Materials Research, 
2023, 38(20): 4477-4496.

[31] Wang L A, Zhou X D, Zhu X K, et al. Estimation of biomass in 
wheat using random forest regression algorithm and remote sensing 
data[J]. The Crop Journal, 2016, 4(3): 212-219.

Appendix
Table A1 Parameters and experimental results for the LWAM‑prepared Ti‑6Al‑4V

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2400
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
2200
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2000
2000
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550
550
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500
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450
450
450
600
600
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550
550

40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40
40

1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3

366.41
365.27
371.95
368.42
370.45
379.46
367.61
373.60
381.38
368.66
371.74
375.32
366.57
367.65
375.56
370.28
375.05
382.58
370.33
377.04
384.25
373.50
374.99
377.85
371.87
375.19
380.48
374.46
381.04

1575.06
1523.20
1510.81
1609.14
1528.00
1516.20
1602.75
1542.48
1569.38
1592.64
1569.54
1596.00
1597.09
1565.12
1502.23
1650.23
1595.85
1508.77
1683.82
1626.26
1589.88
1674.84
1651.67
1644.84
1623.72
1647.49
1554.72
1651.67
1676.99

No. Laser
power /W

Feeding speed/
（mm·min-1）

Scanning speed /
（mm·min-1）

Overlap height /
mm

Hardness /
HV

Compressive
strength /MPa
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30
31
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33
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45
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52
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60
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2400
2400
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2200
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2200
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450
600
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550
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500
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45
45
45
45
45
45
45
45
45
45
45
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45
45
45
45
45
45
45
45
45

1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3

383.42
373.50
379.11
381.56
377.24
375.53
374.35
378.30
381.31
382.59
378.02
382.80
383.68
374.65
377.88
379.12
377.22
375.48
372.13
371.68
370.36
373.11
375.41
371.48
375.85
377.26
369.39
372.51
373.10
365.44
366.95
377.21
376.22
375.65
384.00
381.70
380.19
384.83
378.29
376.68
377.19
368.28

1567.46
1698.42
1691.95
1651.19
1692.37
1686.92
1692.22
1609.76
1661.45
1615.10
1615.13
1665.96
1615.46
1641.59
1646.21
1664.94
1628.22
1625.63
1682.15
1593.54
1587.24
1615.77
1615.91
1604.33
1653.52
1660.83
1643.63
1658.84
1682.99
1672.09
1631.60
1634.59
1636.38
1622.83
1666.97
1669.31
1652.22
1673.93
1681.08
1665.14
1665.57
1674.51

No. Laser
power /W

Feeding speed/
（mm·min-1）

Scanning speed /
（mm·min-1）

Overlap height /
mm

Hardness /
HV

Compressive
strength /MPa

Table A1 continued



0402305-17

特邀论文 第  51 卷  第  4 期/2024 年  2 月/中国激光

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

2200
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
1800
1800
1800
1800
1800
1800
1800
1800
1800
1800
1800
1800

450
600
600
600
550
550
550
500
500
500
450
450
450
600
600
600
550
550
550
500
500
500
450
450
450

45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45
45

1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5
1.1
1.3
1.5

367.54
376.07
371.69
370.27
382.88
378.74
375.14
384.89
379.02
374.06
378.42
371.47
367.14
373.66
365.75
365.12
375.89
367.83
365.92
380.05
371.86
366.64
379.16
373.34
366.34

1646.39
1608.93
1626.59
1569.68
1657.54
1661.45
1597.25
1656.39
1652.83
1646.38
1612.27
1627.26
1643.52
1576.36
1622.12
1554.21
1610.51
1636.57
1579.20
1626.88
1629.28
1644.83
1594.66
1623.75
1658.86

No. Laser
power /W

Feeding speed/
（mm·min-1）

Scanning speed /
（mm·min-1）

Overlap height /
mm

Hardness /
HV

Compressive
strength /MPa

Table A1 continued
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