基于法布里-珀罗干涉仪的瑞利-米散射 测风激光雷达研究

庄鹏^{1,2}, 沈法华^{4*}, 王邦新^{1,2,3}, 谢晨波^{1,2,3}, 邵甲第^{1,2}, 仇成群⁴, 刘东^{1,2,3}, 王英俭^{1,2,3}

1中国科学院安徽光学精密机械研究所中国科学院大气光学重点实验室,安徽 合肥 230031;

²中国科学技术大学研究生院科学岛分院,安徽 合肥 230026;

³先进激光技术安徽省实验室,安徽 合肥 230037;

4盐城师范学院物理与电子工程学院,江苏省智能光电器件与测控工程研究中心,江苏盐城 224002

摘要 为了研制探测中高层风场的瑞利-米散射多普勒激光雷达系统,前期在实验室搭建了一套基于三通道法布 里-珀罗干涉仪(FPI)的532 nm 瑞利-米多普勒激光雷达验证系统,并进行实际比对实验。利用验证系统,首先开展 了 FPI透过率校准实验,采用非线性拟合方法获得了三个通道 FPI实际透过率曲线,FPI-1、FPI-2 和 FPI-L 的谱宽 分别为1.20 GHz、1.22 GHz、1.18 GHz,峰值透过率分别为0.817、0.807、0.768,FPI-1 和 FPI-2 及 FPI-1 和 FPI-L 的峰峰间隔分别为3.91 GHz 和 1.25 GHz,并进一步给出了米散射和瑞利散射信号入射时系统实际的风速探测灵 敏度。其次,开展了径向风速连续观测实验和水平风场对比观测实验。实验结果表明;在单次径向风速测量中,时 空分辨率为2 min 和 75 m 的情况下,系统白天和晚间分别具备 10 km 和 16 km 左右高度的风场探测能力。在白 天 2.7~10 km、晚间 1.5~10 km 高度范围内,系统测得的水平风场数据与探空气球测得的水平风场数据吻合度 较高,晚间 70.8%的水平风速和风向数据偏差小于 2 m/s 和 10°;95%的水平风速和风向数据偏差小于 5 m/s 和 15°,充分验证了系统风场测量结果的准确性。

关键词 遥感;多普勒激光雷达;大气风速测量;法布里-珀罗干涉仪;瑞利-米散射
 中图分类号 TN958.98
 文献标志码 A
 doi: 10.3788/CJL202047.1210001

Rayleigh-Mie Wind Lidar Based on Fabry-Perot Interferometer

Zhuang Peng^{1,2}, Shen Fahua^{4*}, Wang Bangxin^{1,2,3}, Xie Chenbo^{1,2,3},

Shao Jiadi^{1,2}, Qiu Chengqun⁴, Liu Dong^{1,2,3}, Wang Yingjian^{1,2,3}

¹Key Laboratory of Atmospheric Optics Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China;

²Science Island Branch of Graduate School, University of Science and Technology of China,

Hefei, Anhui 230026, China;

³ Advanced Laser Technology Laboratory of Anhui Province, Hefei, Anhui 230037, China;

⁴ Jiangsu Province Intelligent Optoelectronic Devices and Measurement-Control Engineering Research Center,

Department of Physics and Electronic Engineering, Yancheng Teachers University, Yancheng, Jiangsu 224002, China

Abstract In order to develop a Rayleigh-Mie Doppler lidar system for detecting mid-to-high wind fields, a set of 532 nm Rayleigh-Mie Doppler lidar verification system based on triple Fabry-Perot interferometer (FPI) was previously built and the actual comparison test was conducted. Using the verification system, the FPI transmission calibration experiment was carried out firstly, and the actual transmission curves of triple FPI were obtained by using the nonlinear fitting method. The spectral width of FPI-1, FPI-2, and FPI-L were 1.20 GHz, 1.22 GHz, and

基金项目:中国科学院战略性先导科技专项(A类)资助(XDA17040524)、民用航天技术预先研究项目(D040103)、中科院合肥物质科学研究院"十三五"规划重点支持项目(KP-2019-05)、安徽省2017年度高层次科技人才团队项目(010567900)、中国科学院大气光学重点实验室开放基金(2017-01)、江苏省自然科学基金面上项目(SBK2020020046)

* E-mail: shenfh@yctu.edu.cn

收稿日期: 2020-06-03; 修回日期: 2020-07-06; 录用日期: 2020-07-13

1.18 GHz respectively, the peak transmission were 0.817, 0.807, and 0.768 respectively, and the peak intervals of FPI-1 & FPI-2 and FPI-1 & FPI-L were 3.91 GHz and 1.25 GHz respectively. Furthermore, the actual wind speed detection sensitivity of the system was given when both of the Mie and Rayleigh scattering signals were incident. Secondly, continuous observation experiment of radial wind speed and comparative observation experiment of horizontal wind field were carried out. The experimental results show that in the single radial wind speed measurement, the system has the capable of detecting wind field at a height of about 10 km and 16 km in the daytime and night respectively with the time resolution of 2 min and spatial resolution of 75 m. In the height range of 2.7 km to 10 km in the daytime and 1.5 km to 10 km in the night, the data of the horizontal wind field measured by the verification system coincide with those measured by the balloon. In the night, 70.8% of the horizontal wind speed and direction data deviation is less than 2 m/s and 10°, and 95% of the data deviation is less than 5 m/s and 15°, which fully verifies the accuracy of the system wind field measurement results.

Key words remote sensing; Doppler lidar; wind speed measurement; Fabry-Perot interferometer; Rayleigh-Mie scattering

OCIS codes 010.0280; 010.3640

1 引 言

实时的高精度、高时空分辨率的对流层和平流 层风场数据在改进气候模型、研究全球气候变化、促 进大气热力学及动力学研究、提高天气预报的准确 性、保障航空航天器的起飞和着落安全、提高风能利 用率等方面有着重要的应用。多普勒激光雷达是近 30 多年发展起来的一种新型大气风场遥感探测设 备,在时空分辨率、角度方位和机动性等方面相对于 传统的声雷达和微波雷达均有较大的提高,是目前 对三维风场进行高精度、高时空分辨率遥感探测的 最有效工具之一。多普勒激光雷达根据探测体制的 不同可分为相干探测技术[1-4]和直接探测技术[5-19]。 相干探测技术具有很高的探测灵敏度,目前已广泛 应用于风电场、机场航空等领域。但是,由于大气湍 流对激光相干性的破坏以及只能利用气溶胶米散射 信号等原因,它的有效探测距离受到限制,一般水平 方向不超过10 km,垂直方向不超过3 km。通常, 直接探测技术若仅以气溶胶为探测目标,则可以探 测低层大气(约10km以下)风场;若仅以大气分子 为探测目标,则可以探测中高层大气(约10~ 70 km)风场。因此,直接探测技术具有探测覆盖对 流层和平流层高度范围风场的潜力。

目前,国外直接探测的典型系统主要包括:法国 普罗旺斯重点实验室建立的基于双法布里-珀罗干 涉仪(FPI)边缘技术的 532 nm 瑞利-米散射多普勒 激光雷达系统(OHP),其探测范围为 25~60 km, 改进后的第二代系统探测范围达到 8~50 km^[5-6]; 欧洲气象组织在挪威建立的瑞利/米/拉曼散射多参 数测量激光雷达系统(ALOMA),其风场测量采用 碘吸收边缘技术,系统改进后在北极地区的测量范 围为 18~80 km^[7-8];美国 MAC 公司建立的基于 FPI条纹技术的多普勒激光雷达系统,其探测范围 为 0.5~20 km^[9];美国 NASA Goddard 航天中心 大气实验室研制的基于三通道 FPI 双边缘技术的 355 nm 瑞利散射多普勒激光雷达系统(GLOW), 其探测范围为 1.8~35 km^[10]。此外,欧洲航天局 (ESA)发射成功的全球首台星载测风激光雷达 (ALADIN),其探测范围为 0~30 km,低层风场测 量采用 Fizeau 条纹技术, 高层风场测量采用双 FPI 边缘技术[11-12]。国内直接探测的典型系统有:中国 海洋大学组建的基于 532 nm 碘分子吸收谱线边缘 鉴频技术的多普勒激光雷达系统,并报道了低对流 层风速分布^[13]。中国科学院安徽光学精密机械研究 所(以下简称中科院安徽光机所)建成的基于双 FPI 双边缘技术的1064 nm 米散射多普勒激光雷达系统, 其探测范围为 0.2~10 km^[14]。中国科学技术大学研 制成功的两套基于三通道 FPI 双边缘技术的 355 nm 瑞利测风激光雷达系统[15-18],探测范围分别为10~ 40 km 和 15~60 km。中国科学院国家空间科学中心 建成了基于碘分子吸收池的 532 nm 瑞利车载测风激 光雷达^[19],探测范围为 30~70 km。

为了兼顾高低层风场探测,目前中科院安徽光 机所正着力研制探测 5~50 km 风场的 532 nm 瑞 利-米散射多普勒激光雷达。将采用描述瑞利-布里 渊散射谱的 Tenti S6 模型代替描述瑞利散射谱的 高斯模型^[20],并用算法将米散射信号和瑞利散射信 号分离,系统探测能力可以拓展至近地面,从而实现 50 km 以下高低层大气风场探测的全覆盖。系统将 置于 5 m 的移动方舱内,采用倾角可调、800 mm 口 径的 Cassegrain 望远镜。整个方舱放置在一个直 径为 6 m、可 360°旋转的圆形转台上,以实现三维风 场探测。目前,移动方舱、800 mm 口径望远镜和圆 形转台正在建造和加工中,本文利用实验室现有的 300 mm 口径望远镜和二维扫描仪替代 800 mm 口 径望远镜和圆形转台,搭建完成了一套验证实验系 统,并成功开展了 FPI 透过率校准实验、外场风场 探测实验以及探空气球对比实验,从而为实际 800 mm 口径多普勒雷达系统的成功研制夯实了理 论和实验基础。

2 风场探测原理

如图1所示,系统采用三通道 FPI(FPI-1、FPI-2和 FPI-L)测量风速。FPI-1、FPI-2和 FPI-L 是由 一个大口径的 FPI 在其中一个基板的三个不同位 置镀上不同厚度的膜层构成,因此它们的频谱相对 位置严格固定。其中,FPI-L 透射频谱用于测量发 射激光频率n。变化,并将其锁定在 FPI-L 透射频谱 的右侧半腰附近(即 FPI-1 和 FPI-2 透射频谱的交 点附近)。当 n_0 变化时,发射激光经过 FPI-L 的透 过率将发生变化,通过测量发射激光经过 FPI-L 的 透过率可以测得 n_0 的变化值(相对值); FPI-1 和 FPI-2 的透射频谱用于测量大气后向散射光的频率 n,它们分别位于大气瑞利-米后向散射谱的左右两 翼,形成双边缘探测。通过设计合适的 FPI-1 和 FPI-2 参数,使得它们在特定温度下对瑞利散射光 和米散射光的频率测量灵敏度接近相同,进而可以 利用瑞利和米后向散射信号的混叠信号测量 n。当 n 变化时,大气后向散射光经过 FPI-1 和 FPI-2 的 透过率将会一个增大一个减小,通过测量后向散射 光经过 FPI-1 和 FPI-2 的透过率比值可以测得大气 回波光信号频率 n 的变化值(相对值)。至此,大气 风场造成的多普勒频移量 $n_d = n - n_0$, 径向风速 $V_r = n_d l/2, l$ 为发射激光波长。通过测量东西南北 四个不同方向的径向风速 V_r, V_r, V_r, 和 V_r,得到 水平风速大小V_h和方向g,表达式分别为

$$V_{\rm h} = \sqrt{V_x^2 + V_y^2}, \qquad (1)$$

$$\gamma = \arctan(V_x/V_y) +$$

 $\pi \{1 - \text{sign}[(V_y + |V_y|) \cdot V_x]\}, V_y \neq 0, (2)$ 式中: $V_x = (V_{rE} - V_{rW})/2 \sin f; V_y = (V_{rN} - V_{rS})/2 \sin f; f$ 为发射光束天顶角。速度方向规定正北方向为 0°,顺时针旋转。

3 验证系统结构

根据风场探测原理,基于三通道 FPI 的瑞利-米 散射多普勒激光雷达系统的总体结构如图 2 所示。 采用种子光注入的Nd:YAG激光器来 (Continuum9030)产生两倍频 532 nm 的发射激光。 该激光束透过分束片 BS-1(透反比 T/R = 99/1)后, 先由扩束镜扩束来压缩发散角,然后经导光镜、二维 扫描仪以设定的方位发射进入大气探测区域。大气 分子和气溶胶后向散射光由 300 mm 口径 Cassegrain 反射式望远镜接收,并通过多模光纤耦 合进入接收机。进入接收机的后向散射光在经过准 直镜 Collimator-1 准直、窄带滤光片滤光后,由分束 镜 BS-2 和 BS-3(透反比分别为 90/10 和 50/50)分 为三束,一束直接由光子计数工作模式光电倍增管 (PMT)探测器 PC EM 探测;另外两束正入射至 FPI-1 和 FPI-2,透射光信号再分别由光子计数工作 模式 PMT 探测器 PC EDGE1 和 PC EDGE2 探测。 被分束片 BS-1 反射的激光脉冲耦合进入 Y 型光纤 合束端口后,由其中一个分束端口进入准直镜 Collimator-2 准直。该准直光束再由分束镜 BS-4 (透反比 T/R=30/70)分为两束,一束直接由模拟

图 2 基于三通道 FPI 的瑞利-米散射多普勒激光 雷达系统结构示意图 Fig. 2 Schematic of Rayleigh-Mie Doppler lidar system

based on triple FPI

工作模式 PMT 探测器 Analog EM 探测;另一束正 入射至 FPI-L,透射光信号再由模拟工作模式 PMT 探测器 Analog Lock 探测。在进行风场测量时,三 个光子计数探测器信号由速率为 20 MHz 的记录仪 采集,两个模拟探测器信号由速率为1GHz的模拟 数字转换器(A/D)采集。在进行透过率校准测量 时,将Y型光纤的另一个分束端口替换连接望远镜 的多模光纤接入准直镜 Collimator-1,此时 5 个探 测器接收到的均为脉冲宽度 4~8 ns 的激光脉冲信 号,均由采样率为1GHz的A/D采集。此外,对种 子光进行温控以减小发射激光频率的漂移和抖动; 整个接收机做了密封处理,以减小杂散光干扰和 FPI 周围的温度变化。激光雷达系统包括:激光器 控制器、扫描仪控制器、FPI控制器、数据记录仪和 A/D采集卡等单元,均通过RS232串口由工控机控 制。系统实物照片如图3所示。详细的验证系统参 数如表1所示,其中,FSR为自由光谱范围,FWHM 为半峰全宽。需要说明的是: PC EM、PC EDGE1 和 PC EDGE2 三个探测器采用的是大动态范围 PMT 模块,在 800 mm 口径的雷达系统中,将同时 处于模拟和光子计数两种工作模式。

图 3 基于三通道 FPI 的多普勒激光雷达验证 系统实物照片

Fig. 3 Photos of verification system for Doppler lidar based on triple FPI

表 1 基于三通道 FPI 的多普勒激光雷达验证系统设计参数							
Table 1 Design parameters of verification system for Doppler lidar based on triple FPI							
Parameter			Value	Parameter		Value	
Emission system	Nd: YAG laser Continuum9030	Wavelength /nm	532			FSR /GHz	8
		Pulse energy $/mJ$	430			FWHM /GHz	1
		$Frequency \ / \ Hz$	30		Triple FPI ET70	FPI-1 and -2	3.48
		Pulse width /ns	4-8			peak-to-peak /GHz	
		Line width $/\mathrm{MHz}$	90			FPI-1 and -L	1.16
		Beam diameter / mm	9			peak-to-peak /GHz	
		Divergence	0.5			Peak transmittance / $\%$	> 60
		angle / mrad				Caliber / mm	80
	Beam expander	Magnification	10			Wavelength $/nm$	532
Transceiver optical system	Cassegrain telescope	Caliber / mm	300	Receiving	Filter	FWHM /nm	0.5
		Focal	2440	system .		Peak transmittance / $\%$	70
		length /mm			Beam splitter	T/R	90/10; 50/50
		Receiving	0.08				30/70
		field / mrad			DMT detector	Model	R9880U-20
		Optical	85		I WIT detector	Operating mode	AD+PC
		efficiency / $\%$			Fiber	Core diameter /mm	0.2(edge)/
	Scanner	Scan range /(°)	360 imes 90				0.1(lock)
		Caliber / mm	350			NA	0.11
		Optical	60		Acquisition card	Sampling rate /	1000/20
		efficiency / %				(GHz/MHz)	

4 三通道 FPI 透过率校准实验

如图 2 所示,在对三通道 FPI 透过率进行校准时,激光器的 1%发射激光能量耦合进入 Y 型光纤的合束端,其中一个分束端口接入接收机中的 Collimator-1 用于 FPI-1 和 FPI-2 的透过率校准测

量;另一个分束端口接入接收机中的 Collimator-2 用于 FPI-L 的透过率校准测量。由于是对脉宽 4~ 8 ns 的脉冲激光进行直接探测(实测值为 8 ns),所 以选择响应时间为 1 ns 的 PMT 探测器,并使用采 样速率为 1 GHz 的 A/D 采集卡进行信号采集。图 4 为采集卡实际采集到的 PMT 探测器输出脉冲信

图 4 高速 A/D 采集卡采集到的 PMT 输出脉冲信号 Fig. 4 PMT output pulse signal collected by high-speed A/D acquisition card

号示例。在脉冲峰值前后取 16 个点的信号,每个信号点间隔 1 ns,16 个点对应 15 ns 时间长度,累加后再扣除基底作为 PMT 探测到的时间积分信号 *I*。

在透过率校准测量过程中,FPI 腔长扫描程序 通过工控机通信串口发送指令给FPI控制器,再由 控制器驱动 PZT 按程序设定的扫描步长和扫描范 围对 FPI 腔长连续调节。假定 PC EDGE1、PC EDGE2、PC EM、Analog Lock 和 Analog EM 探测 到的时间积分信号数据列分别为 $I_1(n_m)$ 、 $I_2(n_m)$ 、 $I_e(n_m)$ 、 $I_{Ls}(n_m)$ 及 $I_{Le}(n_m)$,则

$$T_{1}(\nu_{m}) = \frac{a_{3}}{a_{1}} \frac{I_{1}(\nu_{m})}{I_{e}(\nu_{m})}, T_{2}(\nu_{m}) = \frac{a_{3}}{a_{2}} \frac{I_{2}(\nu_{m})}{I_{e}(\nu_{m})},$$
$$T_{L}(\nu_{m}) = \frac{a_{5}}{a_{4}} \frac{I_{Ls}(\nu_{m})}{I_{Ls}(\nu_{m})},$$
(3)

式中:m 为扫描 FPI 腔长的步数; n_m 为第m 步对应的频率; $a_1 \sim a_5$ 为校准常数。本系统中 FPI 腔长变化的最小步长为 0.125 nm,等效对应 3.67 MHz 的激光频率变化。对五个探测器的实测数据列采用非线性最小二乘拟合方法拟合就可得到三通道 FPI 透过率曲线,拟合方程为

$$T_{\rm M}(\upsilon) = C + \eta_{\rm FP} \left\{ 1 + 2 \sum_{n=1}^{50} R_{\rm e}^n \cos\left[\frac{2\pi n \left(\nu - \nu_{\rm p}\right)}{\nu_{\rm FSR}'}\right] \cdot \exp\left[-\left(\frac{\pi n \Delta \nu_l}{\nu_{\rm FSR}'}\right)^2\right] \operatorname{sinc}\left(\frac{2n\nu_{\rm o}}{\nu_{\rm FSR}'} \frac{1 - \cos \theta_{\rm o}}{1 + \cos \theta_{\rm o}}\right) \right\}, \quad (4)$$

式中:*C* 为背景常数; $h_{\rm FP} = T_{\rm pe}(1-R_{\rm e})(1+R_{\rm e})$ 为 FPI 的光学效率, $T_{\rm pe}$ 为峰值透过率, $R_{\rm e}$ 为有效反射 率; $v'_{\rm FSR} = 2v_{\rm FSR}/(1+\cos q_{\rm o})$, $v_{\rm FSR}$ 为自由谱间距, $q_{\rm o}$ 为光信号入射至 FPI 的光束发散角,本系统为 1.25 mrad; $Dv_l = dv/(4\ln 2)^{1/2}$,dv 为发射激光线 宽,本系统为 90 MHz; $v_0 = c/l$,l 为激光波长,c 为 真空中光速。

图 5 为实测的 $T_1(v_m)$ 、 $T_2(v_m)$ 、 $T_e(v_m)$ 数据 列及相应的拟合曲线 $T_{1M}(v)$ 、 $T_{2M}(v)$ 、 $T_{eM}(v)$ 。 该拟合曲线代表发射激光或者大气米散射光入射时 三个通道 FPI 的透过率。拟合得到 FPI-1、FPI-2 和 FPI-L 的 v'_{FSR} 、 R_e 、 T_{pe} 和 v_p 分别为 8.56 GHz、 0.645,0.817, - 6.102 GHz, 8.57 GHz, 0.641, 0.807、-2.194 GHz,以及 8.59 GHz、0.652、 0.768、-4.851 GHz。由此可得, FPI-1、FPI-2 和 FPI-L 的透射谱宽分别为 1.20 GHz、1.22 GHz 和 1.18 GHz; FPI-1 和 FPI-2 以及 FPI-1 和 FPI-L 的 峰峰间隔分别为 3.91 GHz 和 1.25 GHz。将前两 组拟合结果分别代入(4)式,并用 Dv_{e} 替换 Dv_{1} 代 入,即可得到大气瑞利散射光入射时 FPI-1 和 FPI-2 的透过率 $T_{1R}(v)$ 和 $T_{2R}(v)$,其中 $Dv_e = (Dv_1^2 +$ Dv_r^2)^{1/2}, $Dv_r = (8kT_a/Ml^2)^{1/2}$ 为瑞利谱线 1/e 高度 处的展宽量,k为玻耳兹曼常数, T_a 为大气温度,M为大气分子质量。

图 6 同时给出了 $T_{1M}(v)$ 、 $T_{2M}(v)$ 、 $T_{eM}(v)$ 以及

大气温度分别为 220 K 和 290 K 时的 $T_{1R}(v)$ 和 $T_{2R}(v)$ 。将发射激光频率锁定在图 6 所示的 -4 GHz 附近,则实测的米散射信号和不同大气温度 条件下瑞利散射信号入射至 FPI-1 和 FPI-2 时总的风 速测量灵敏度 S_v (单位速度变化引起的透射信号的 相对变化量)随风速的变化如图 7 所示。可以看出,米散射信号的风速测量灵敏度约为 0.5 %/(m•s⁻¹);在 220~290 K 温度范围内,瑞利散射信号的风速测量 灵敏度在 0.5~0.6 %/(m•s⁻¹)变化。

图 5 扫描 FPI 腔长时实测的原始透过率数据 及相应的拟合曲线

Fig. 5 Measured original transmittance data and the corresponding fitting curve when scanning the FPI cavity length

5 风场探测实验

在完成 FPI 透过率校准后,进一步开展了风场

图 6 发射激光/米散射光和瑞利散射光入射时 FPI 透过率曲线

Fig. 6 FPI transmittance curves when emitted laser/Mie and Rayleigh scattering light are incident

图 7 米散射和瑞利散射信号入射至 FPI-1 和 FPI-2 时总的风速测量灵敏度

Fig. 7 Total wind speed measurement sensitivities when Mie or Rayleigh scattering signals are incident on FPI-1 and FPI-2

探测实验。图 8(a) 是 2020 年 5 月 11 日 22 时 24 分 开始连续5组同一方向的径向风速测量结果(天顶 角为 27°),每组的脉冲累计时间为 2 min,空间分辨 率为 75 m。图 8(b)为 5 组径向风速测量结果的平 均值和方差。由图 8(b)可知,在 8 km 距离附近有 明显的风切变,1.8~8.7 km 之间 80.4%距离处的 方差小于3m/s,方差最大值小于5m/s。该方差由 雷达系统风场测量不确定误差和 10 min 时间内探 测区域大气风速变化两部分构成。图 9(a)为 2020 年5月18日21时48分开始,发射激光先后指向天 顶角 27°、东南西北方位的四个径向风速测量结果。 3 km 以下由于受到气溶胶散射和布里渊散射的影 响,风速测量结果与实际有较大的偏差;3 km 以上 可以看到,东西和南北两对测量数据关于零风速有 较为明显的对称性,这也从侧面验证了系统风速测 量数据的可靠性。利用 $e_v = 1/(R_{SN}S_v)$ 得到四个径 向风速的测量误差,如图 9(b)所示,其中 e_v为径向 风速测量误差, R_{SN} 为测量 FPI-1 和 FPI-2 接收信 号比值的信噪比。可以看出,径向风速测量误差在 16 km 距离达到了 10 m/s,这是由于验证系统探测 信号的信噪比较低。如表1所示,验证系统采用 300 mm 口径望远镜, 而实际系统采用 800 mm 口 径,导致望远镜接收面积减小为1/7。激光器、扩束 镜和二维扫描仪均采用实验室原有设备,激光器的 实测发射激光脉冲能量为 430 mJ,而同型号的出厂 标称激光脉冲能量为 800 mJ,能量减小了一半;扩 束镜入射口径只有 3 mm, 而激光器出射光斑直径 为 9 mm,即使考虑到光斑不均匀性,由于扩束镜的 遮挡,扩束后的激光能量将减小为1/7;由于表面所 镀膜层的老化,收发光学系统的光学效率只有 85%×60%=51%, 而实际系统可以做到 90%以 上,考虑到往返光路,总光学效率将减小为1/3。因 此,受望远镜口径和发射激光能量减小、系统总体光 学耦合效率低等因素的影响,与实际系统相比,验证 系统探测信号的信噪比减小为1/18。

图 10 和图 11 分别为 2020 年 5 月 12 日下午和 5月18日晚上多普勒激光雷达验证系统与探空仪 的水平风速大小和方向的对比结果。多普勒激光雷 达的单组水平风速数据的获取周期为8 min,垂直 分辨率为 66.7 m@<10 km;133.4 m@>10 km。 由图 10 和图 11 可知,在白天 2.7~10 km、晚间 1.5~10 km 高度范围两种探测设备的水平风速大 小和方向随高度的变化趋势一致,并且数据吻合得 比较好。将5月18日晚1.5~10km高度范围的探 空数据进行线性插值获得与验证系统同时同高度的 风场数据,两者构成水平风速和风向两组数据对,其 相应的差值分别如图 12(a)和图 12(b)所示。统计 分析得到:70.8%的水平风速和风向数据对的差值 小于2 m/s 和 10°;95%的水平风速和风向数据对 的差值小于 5 m/s 和 15°。根据探空数据可知,在 10 km 以上高度范围内,探空气球所在位置已经偏 离了激光雷达 120 km, 所以在 10 km 以上, 风速偏 差较大,但是在白天12 km 高度范围内、晚间16 km 高度范围内,验证系统和探空风速数据的变化趋势 仍然一致;而在 2 km 高度以下两者出现偏离最可 能是激光雷达受到气溶胶散射和布里渊散射的影 响。在激光雷达低层的风速反演过程中,采用更符 合实际的描述瑞利-布里渊散射谱的 Tenti S6 模型, 并通过算法将米散射和瑞利散射信号分离,可以提 高数据反演的准确性。这是我们下一步的重要工作 之一。针对探空气球在高空飘离激光雷达探测区域 而导致两者风速数据对比结果可信度降低的问题,

图 9 天顶角为 27°、东南西北四个方位的径向风速和误差。(a)径向风速;(b)径向风速误差 Fig. 9 Radial wind speed and error in East, South, West, and North with zenith angle of 27°. (a) Radial wind speed; (b) radial wind speed error

图 10 2020 年 5 月 12 日下午多普勒激光雷达验证系统与探空仪对比结果。(a)水平风速;(b)水平风向 Fig. 10 Comparison results of Doppler lidar verification system and radiosonde on the afternoon of May 12,2020. (a) Horizontal wind speed; (b) horizontal wind direction

图 11 2020 年 5 月 18 日夜晚多普勒激光雷达验证系统与探空仪的对比结果。(a)水平风速;(b)水平风向 Fig. 11 Comparison results of Doppler lidar verification system and radiosonde on the night of May 18, 2020. (a) Horizontal wind speed; (b) horizontal wind direction

图 12 2020 年 5 月 18 日夜晚两种探测设备测得的水平风场差值。(a)水平风速差值;(b)水平风向差值

Fig. 12 Horizontal wind field difference measured by two detection devices on the night of May 18, 2020.

(a) Horizontal wind speed difference; (b) horizontal wind direction difference

今后除与探空气球对比外,考虑同时与微波雷达和 ESA 星载测风激光雷达进行数据对比。

6 结 论

目前,中科院安徽光机所正研制可探测 5~ 50 km 高度范围风场的瑞利-米散射多普勒激光雷 达系统,用于实现能够兼顾高低层风场探测的需求。 为了确保项目的顺利开展,先期利用实验室已有的 300 mm 口径望远镜和二维扫描仪成功搭建了一套 验证系统,并先后开展了 FPI 透过率校准实验、径 向风速连续观测实验以及水平风场对比观测实验。 实验结果表明:尽管受到望远镜口径和激光器发射 脉冲能量减小、系统总体光学耦合效率低等因素的 影响,但是验证系统总体性能依然良好。在单次径 向风速测量中,时空分辨率为2 min 和 75 m 的情况 下,白天具备 10 km 左右高度的风场探测能力,夜 晚则可以达到 16 km 高度;在白天 2.7 km 以上和 夜晚1.5 km 以上高度, 与探空气球的水平风场对 比实验数据吻合度较好。这些结果为确保 800 mm 口径瑞利-米多普勒测风激光雷达系统的顺利研制 打下了很好的前期基础。课题组下一步工作除了要 加快 800 mm 口径雷达系统的研制外,将在低层风 速反演方法和 FPI 温控稳频技术方面展开进一步 研究,以拓展系统的低层风场探测能力和提高系统 的风场探测精度。

参考文献

- [1] Huffaker R M, Reveley P A. Solid-state coherent laser radar wind field measurement systems[J]. Pure and Applied Optics: Journal of the European Optical Society Part A, 1998, 7(4): 863-873.
- [2] Diao W F, Liu J Q, Zhu X P, et al. Study of all-fiber coherent Doppler lidar wind profile nonlinear least

square retrieval method and validation experiment [J]. Chinese Journal of Lasers, 2015, 42 (9): 0914003.

刁伟峰,刘继桥,竹孝鹏,等.全光纤相干多普勒激光雷达非线性最小二乘风速反演方法及实验研究[J].中国激光,2015,42(9):0914003.

- Chen Y, An J L, Lin J, et al. Observation of nocturnal low-level wind shear and particulate matter in urban Beijing using a Doppler wind lidar [J]. Atmospheric and Oceanic Science Letters, 2017, 10 (6): 411-417.
- [4] Zhao M, Guo P, Rui X B, et al. Wind-field vector retrieval method at low signal-to-noise ratio for coherent Doppler lidar[J]. Chinese Journal of Lasers, 2018, 45(11): 1110005.
 赵萌,郭磐,芮训豹,等. 低信噪比下相干多普勒激 光雷达风场矢量反演算法[J]. 中国激光, 2018, 45 (11): 1110005.
- [5] Souprayen C, Garnier A, Hertzog A, et al. Rayleigh-Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results [J]. Applied Optics, 1999, 38(12): 2410-2421.
- [6] Souprayen C, Garnier A, Hertzog A. Rayleigh-Mie Doppler wind lidar for atmospheric measurements.
 II. Mie scattering effect, theory, and calibration[J]. Applied Optics, 1999, 38(12): 2422-2431.
- [7] Rees D, Vyssogorets M, Meredith N P, et al. The Doppler wind and temperature system of the ALOMAR lidar facility: overview and initial results
 [J]. Journal of Atmospheric and Terrestrial Physics, 1996, 58(16): 1827-1842.
- [8] Baumgarten G. Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km [J]. Atmospheric Measurement Techniques, 2010, 3(6): 1509-1518.
- [9] Dehring M T, Nardell C A, Pavlich J C, et al. Performance and comparison of 532 nm and 355 nm

groundwinds lidars [J]. Proceedings of SPIE, 2003, 4893: 337-347.

- [10] Gentry B M, Chen H, Li S X. Wind measurements with 355 nm molecular Doppler lidar [J]. Optics Letters, 2000, 25(17): 1231-1233.
- Ingmann P. Status of the Doppler wind lidar profiling mission ADM-Aeolus [R]. ESA Report, SP, 1999, 1233(4):1-8.
- [12] Ansmann A, Wandinger U, Rille O L, et al. Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations[J]. Applied Optics, 2007, 46(26): 6606-6622.
- [13] Liu Z S, Wu D, Liu J T, et al. Low-altitude atmospheric wind measurement from the combined Mie and Rayleigh backscattering by Doppler lidar with an iodine filter [J]. Applied Optics, 2002, 41 (33): 7079-7086.
- Shen F H, Cha H, Sun D S, et al. Low tropospheric wind measurement with Mie Doppler lidar [J]. Optical Review, 2008, 15(4): 204-209.
- [15] Shen F H, Shu Z F, Sun D S, et al. Wind retrieval algorithm of Rayleigh Doppler lidar[J]. Acta Physica Sinica, 2011, 60(6): 192-198.
 沈法华,舒志峰,孙东松,等. 瑞利散射多普勒激光 雷达风场反演方法[J].物理学报, 2011, 60(6): 192-198.
- [16] Shu Z F, Dou X K, Xia H Y, et al. Low

stratospheric wind measurement using mobile Rayleigh Doppler wind lidar [J]. Journal of the Optical Society of Korea, 2012, 16(2): 141-144.

- [17] Dou X K, Han Y L, Sun D S, et al. Mobile Rayleigh Doppler lidar for wind and temperature measurements in the stratosphere and lower mesosphere[J]. Optics Express, 2014, 22(105): A1203-A1221.
- [18] Liu F F, Bi D C, Liu H, et al. Principle prototype and experimental progress of wind lidar for near-space
 [J]. Chinese Journal of Lasers, 2020, 47 (8): 0810003.
 刘菲菲,毕德仓,刘恒,等.临近空间激光测风雷达原理样机和实验进展[J].中国激光,2020,47(8): 0810003.
- [19] Fan Y, Lin Z X, Cheng X W, et al. Pulsed laser spectral pattern detection based on Fabry-Perot interferometer[J]. Chinese Journal of Lasers, 2018, 45(8): 0804006.
 獎燚,林兆祥,程学武,等.基于法布里-珀罗干涉仪的脉冲激光谱型测量[J].中国激光, 2018, 45(8): 0804006.
- Zhang X. A spontaneous Rayleigh-Brillouin scatteing study for the characterization of atmospheric [D]. Nanchang: Nanchang Hangkong University, 2012: 13-19.

张晓.大气瑞利-布里渊散射频谱特性研究[D].南 昌:南昌航空大学,2012:13-19.