高沉积率激光熔覆沉积 GH4169 合金的 微观组织与拉伸性能

李祚**,隋尚*,袁子豪,李浩胜,陈静***,林鑫

西北工业大学凝固技术国家重点实验室,陕西西安 710072

摘要 采用高沉积率激光熔覆沉积技术制备了 GH4169 合金试样,研究了沉积率为 2.2 kg/h 时 GH4169 合金的微 观组织和拉伸断裂机制。结果表明:高沉积率激光熔覆沉积 GH4169 合金沉积态试样的析出相主要包括 Laves 相、针状 δ 相及不均匀分布的 γ[']和 γ[']强化相。拉伸测试结果表明,沉积态 GH4169 高温合金的塑性和强度均低于 锻件标准。

关键词 激光技术;高沉积率激光熔覆沉积;GH4169 合金;微观组织;热循环;拉伸性能
 中图分类号 TG146.4+1
 文献标识码 A
 doi: 10.3788/CJL201946.0102004

Microstructure and Tensile Properties of High-Deposition-Rate Laser Metal Deposited GH4169 Alloy

Li Zuo^{**}, Sui Shang^{*}, Yuan Zihao, Li Haosheng, Chen Jing^{***}, Lin Xin

State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China

Abstract The GH4169 alloy samples are fabricated by the high-deposition-rate laser metal deposition (HDR-LMD) technique and their microstructures and tensile properties are investigated when the deposition rate is 2.2 kg/h. The precipitated phases of the HDR-LMDed samples mainly include Laves phase, acicular δ phase and non-uniformly distributed γ'' and γ' phases. The tensile test results show that the plasticity and strength of the as-deposited superalloy are both lower than the forging standard.

Key words laser technique; high-deposition-rate laser metal deposition; GH4169 alloy; microstructure; thermal cycle; tensile property

OCIS codes 140.3390; 160.3900; 350.3390

1 引 言

随着现代制造业形态的升级,我国重型装备逐 渐向大型化、高性能、整体化的方向快速发展,这对 大型高性能金属结构件的制造技术提出了更高的要 求^[1]。采用铸锭冶金结合塑性成形等传统制造技术 生产上述金属构件,不仅需要万吨级以上的重型锻 造装备及大型锻造模具,而且材料利用率低,加工周 期长,制造成本高^[2]。高沉积率激光熔覆沉积 (HDR-LMD)技术是以合金粉末或丝材为原料,通 过高功率激光原位冶金熔化、快速凝固逐层堆积,实 现大型高性能金属结构件整体近净成形的一种技 术,可以显著提高材料利用率,缩短产品周期,降低 制造成本^[3-7]。该技术独特的制造优势引起了国内 外研究学者的高度关注。

GH4169 合金作为目前产量最大、应用领域最广 的镍基高温合金之一,在航空航天领域占有举足轻重 的地位^[8-12]。对于大型高性能 GH4169 合金结构件 的快速制备,沉积率大于 2 kg/h 的 HDR-LMD 有望 成为该领域的重要制造技术之一。与传统激光熔覆 沉积 (C-LMD) 技术(激光功率不大于 2 kW,送粉量 不大于 1.1 kg/h)相比,HDR-LMD 技术同时提高了 能量输入和质量输入(激光功率为 3 kW,送粉速率为 4.2 kg/h),导致激光熔覆沉积过程中凝固组织和后续

收稿日期: 2018-08-01; 修回日期: 2018-08-24; 录用日期: 2018-09-20

基金项目: 航天科技创新基金(X工艺 20160095-007)、中德科学基金(GZ1267)

^{*} E-mail: mortal@mail.nwpu.edu.cn; ** E-mail: lizuo@mail.nwpu.edu.cn; *** E-mail: phd2003cjj@nwpu.edu.cn

固态相变组织发生较大的变化。Sivaprasad 等^[13]发 现,热输入差异使 GH4169 合金在凝固过程中的冷却 速率不同,导致凝固末期 Laves 相的形貌与体积分数 均不同。Nie 等[14] 在探究激光沉积 GH4169 合金 Laves 相的形貌演化时发现,在低的冷却速率(500~ 1000 ℃/s) 下 Laves 相以长链状形貌析出,在高的冷 却速率(4000 ℃/s) 下 Laves 相以细小颗粒状析出; 另一方面,热输入的变化会导致 HDR-LMD 过程中 正在成形的沉积层对已成形沉积层产生的循环再热 作用发生变化。Wang等^[15]发现,随着沉积高度的增 加和热循环周期的延长,柱状晶逐渐发生粗化,Laves 相的体积分数逐渐减小。Han 等^[16]在探究激光修复 TC17-TC11 双合金组织时发现,往复热循环作用使显 微组织经历了锻造双态组织、细小的全等轴晶、过热 粗大晶粒三个阶段,其间有大量细小针状次生α相从 锻件基材中析出。

然而,针对 HDR-LMD 技术的研究并未充分考 虑热输入的影响^[17-19],尤其是当制备大型高性能金 属结构件时,HDR-LMD 过程中的循环再热作用对 沉积态组织的影响更加显著^[15],目前有关这方面的 认知还有待进一步探究。因此,本文采用 HDR-LMD 技术制备沉积高度为 75 mm 的 GH4169 块体 试样,通过观察沉积态组织中部(承受载荷部位)的 显微组织特征,来探究成形过程中的循环再热作用 对显微组织的影响;并结合室温拉伸测试,分析循环 再热作用对沉积态拉伸断裂行为的影响。

2 实验材料与方法

采用等离子旋转电极法制备 GH4169 合金粉 末,粉末粒径为 45~90 μ m,粉末的主要化学成分见 表 1。激光熔覆沉积前对合金粉末进行真空烘干除 湿处理,烘干温度为 150 ℃,烘干时间为 6~8 h,保 温结束后在真空炉中冷却至室温。基材采用 316L 不锈钢,尺寸为 140 mm×50 mm×5 mm,在 140 mm×50 mm 的平面上激光熔覆沉积 GH4169 合金试样块。激光熔覆沉积前将基材 140 mm× 50 mm的平面用粗砂纸打磨,去除表面氧化皮,露出 新鲜白亮金属表面,继续用 1000 # 砂纸打磨后再用 丙酮清洗、吹干。

表1 GH4169 合金的化学成分(质量分数,%)

Table 1 Chemical compositions of GH4169 alloy (mass fraction, %)

Material	Cr	Ni	Nb	Mo	Al	Ti	Fe
GH4169	17.41	52.63	5.00	2.84	0.77	1.05	Bal.

激光熔覆沉积实验在凝固技术国家重点实验室 自行研制的 laserline LDF 6000 设备上进行。该设 备包括 6 kW 半导体激光器、高精度可调自动送粉 器、同轴送粉喷嘴、稀有气氛加工室(氧体积分数低 于 50×10⁻⁶)、五轴四联动数控工作台、氧含量实时 监测系统等机构。成形过程采用交叉式扫描路径, 具体工艺参数见表 2,成形试样在真空箱内冷却到 室温后取出。

表 2	高沉积率激光熔覆沉积 GH4169 合金的工艺参数	
Table 2	Process parameters for HDR-LMD of GH4169 allo	

Laser	Scanning speed /	Spot	Monolayer	Powder feeding	Overlap
power $/kW$	$(mm \cdot min^{-1})$	diameter /mm	height /mm	rate /(kg • h^{-1})	rate / %
4	1600	5	0.8	4.166	50

图 1 高沉积率激光熔覆沉积 GH4169 合金块体试样。(a)实物图;(b)拉伸试样尺寸

Fig. 1 HDR-LMD obtained GH4169 alloy block sample. (a) Physical map; (b) sample size for tensile test

图 1 所示是用于显微组织观察和拉伸性能测试 的块体试样,尺寸为 40 mm×40 mm×75 mm,成 形试样的沉积率约为 2 kg/h。采用电火花线切割 机沿着沉积态组织的高度方向切取沉积材料,制成 显微组织试样;沿着高度方向切取三个尺寸完全相 同的棒状拉伸试样,试样尺寸如图1(b)所示。拉伸 试样表面依次采用 180/320/640/800/1200/1500 # 砂纸进行打磨,以去除拉伸试样表面的切割痕迹。 在 Instron5565 型微机控制电子万能试验机上进行 室温拉伸实验,加载速率为1 mm/min。采用光学 显微镜(OM,GX51,Olympus,日本)及场发射扫描 电子显微镜(SEM, Nova NanoSEM, FEI, 美国)观 察显微组织和断口形貌。显微组织试样用不同粒度 砂纸打磨,然后进行机械抛光及腐蚀,腐蚀剂为 100 mL C₂H₅OH+20 mL HCl+5 g FeCl₃,腐蚀时 间为 5~10 s。在电子背散射衍射(EBSD)测试之 前,对已机械抛光的试样进行振动抛光。EBSD 测 试在装有 HKL 附件的 SEM (VEGA3 LMH, TESCAN)上进行,附加电压为20 kV,样品倾斜角 为70°,步长为2 µm。从沉积态组织中部切下5 mm×5 mm×1 mm的方块,并采用机械研磨法使 其厚度减薄到约50 μm,然后采用电解双喷法完成 透射试样的制备,所用透射电镜为 Tecnai F 30G2 (FEI,美国)。

3 实验结果与讨论

3.1 沉积态宏观形貌

图 2 所示为高沉积率激光熔覆沉积 GH4169 合 金(HDR-LMDed GH4169)沿着沉积方向的宏观组 织。从图 2 可以看出,沿沉积方向外延生长的柱状 晶组织是激光熔覆沉积 GH4169 合金显微组织最 显著的特征,同时柱状晶在沉积方向上穿越多个沉 积层。柱状晶的生长方向大致为沿沉积方向垂直向 上,如图 2(a)中红色箭头所示,这与熔池凝固过程 中的热量扩散方向有关。各沉积层之间呈明显的层 带特征,主要是由于上下两熔覆层相连接的部位组 织结构不同。高沉积率 GH4169 合金中的一次枝 晶间距约为 12 μm,如图 2(b)所示。图 3 所示为高 沉积率沉积态试样的极图,可以看出,(100)方向的 织构强度超过了 21,说明高沉积率成形试样中柱状 晶的定向性很强且排列非常规整。

图 2 高沉积率激光熔覆沉积 GH4169 合金宏观组织。(a) OM 图片;(b)一次枝晶间距

Fig. 2 Macrostructure of HDR-LMDed GH4169 alloy. (a) Optical micrograph; (b) primary dendrite arm spacing

图 3 高沉积率激光熔覆沉积 GH4169 合金的极图 Fig. 3 Pole figures of HDR-LMDed GH4169 alloy

3.2 沉积态相组成

GH4169 合金的凝固过程^[20]可归结为:L $\rightarrow \gamma$ + L $\rightarrow (\gamma + \text{NbC})$ +L $\rightarrow \gamma$ +L $\rightarrow \gamma$ +Laves。因此,在熔 池凝固过程中,先后会有 γ 相、NbC 相和 γ +Laves 共晶相生成。图 4 所示为高沉积率 GH4169 合金沉 积态的微观组织,可以看出有三种白色的析出相,如 红色箭头所示。激光熔覆沉积 GH4169 合金沉积 态组织的能量色散谱(EDS)分析位置如图 5 所示。 表 3 给出了对应位置的微观偏析定量分析结果,对 比枝晶间与枝晶干区域的成分发现,枝晶干中 Nb、 Mo 和 Ti 三元素的含量比枝晶间低。此外,有文献 报道,在GH4169合金凝固过程中,枝晶区域Nb元

图 4 高沉积率 GH4169 合金试样中部的显微组织。(a) Laves 相;(b) δ相;(c) γ"/γ'相

Fig. 4 Microstructure of central HDR-LMDed GH4169 alloy sample. (a) Laves phase; (b) δ phase; (c) γ''/γ' phase

图 5 激光熔覆沉积 GH4169 合金沉积态组织 EDS 分析位置 Fig. 5 Positions for EDS analysis of as-deposited structure in HDR-LMDed GH4169 alloy

表 3 高沉积率激光熔覆沉积 GH4169 合金枝晶间的 微观偏析定量分析结果(质量分数,%)

Table 3 Quantitative analysis of interdendritic microsegregation in HDR-LMDed GH4169 alloy (mass fraction, %)

Element	Spectrum 1	Spectrum 2	Spectrum 3
Ni	54.49	55.88	41.72
Cr	14.81	17.56	13.54
Fe	13.98	17.79	13.33
Nb	12.58	3.61	24.23
Mo	1.83	3.89	4.81
Ti	1.63	0.66	1.94
Al	0.68	0.62	0.42

素的富集程度通常可达 $6\% \sim 10\%$ (质量分数),而 Laves 相形成区 Nb 元素将达到 10% (质量分数)以 上^[21]。结合 EDS 测试结果可以证明:图 4(a)中枝 晶间析出白色相为 Laves 相; Laves 相处的 Nb 元 素质量分数为 24.23%;Laves 相主要分布于枝晶间 区域,长度为 $2\sim 10~\mu$ m。

除了 Laves 相外,从沉积态组织中还观察到了针 状δ相的析出,如图 4(b)所示,其长度约为6 μm,主 要分布在 Laves 相的周围与晶界处。高沉积率沉积 态试样中观察到 δ 相析出,可能是由于在激光熔覆沉 积过程中,正在成形的沉积层会对已成形的沉积层产 生再热作用,而在高沉积率成形过程中这一作用会更 加剧烈,产生更加强烈的热循环效应,从而加剧了沉 积过程中的热积累,使得沉积层的温度足以使δ相析 出,同时在此温度区间停留的时间也达到了δ相析出 所需的孕育时间,最终导致高沉积率 GH4169 合金沉 积态试样中有δ相的析出。δ相的析出也可以进一步 通过电子衍射图谱加以证明。图6所示为高沉积率 GH4169 合金 δ 相的透射图。图 6(a)、(b)分别是 δ 相 的明场像和暗场像:图 6(c)为图 6(a)、(b)的衍射图 谱,该图谱表明沉积态组织中部有δ相析出,δ-Ni₃Nb 相为衍生正交 DO_a 结构,点阵常数 a = 0.517 nm, b = $0.4351 \text{ nm}, c = 0.4527 \text{ nm}_{\circ}$

图 6 高沉积率激光熔覆沉积 GH4169 合金试样的透射图。(a) δ 相的明场像;(b) δ 相的暗场像;(c) δ 相的选区电子衍射图谱 Fig. 6 Transmission image of HDR-LMDed GH4169 alloy sample. (a) Bright field image of δ phase; (b) dark field image of δ phase; (c) selected area electron diffraction pattern of δ phase 从图 4(c)中颗粒相的形貌和尺寸可以确定其 为强化相,但是根据电镜照片无法确定强化相的种 类,因此有必要进行进一步验证。图 7 所示为高沉 积率激光熔覆沉积 GH4169 合金试样的透射图。

从图 7(a)可以发现,颗粒相的尺寸在几纳米到 几十纳米之间,呈近球形,通过电子衍射图谱进一步 确认强化相的种类。图 7(b)为图 7(a)的衍射图谱, 该图谱表明,在沉积态组织中部均有 $\gamma''相和 \gamma' 相析$ 出, γ' -Ni₃(Al,Ti)相为面心立方 LI₂ 结构,点阵常 数 a=b=c=0.3851 nm。 γ'' -Ni₃Nb 相是体心四方 DO₂₂结构,通常与基体 γ 相共格析出,点阵常数a=

b=0.3624 nm, c=0.7406 nm。从图 4(c)可以看出,强化相分布不均匀,主要分布在 Laves 相周围,这可能是由于 Laves 相周围 Nb 元素含量满足强化相析出所需的 Nb 元素含量,同时热循环效应满足强化相析出所需的温度及孕育时间,因此二者共同作用导致了高沉积率 GH4169 合金强化相的析出。与锻件试样相比,HDR-LMD 沉积态试样在热循环作用下经历的强化相析出时长最多为 1 h,而锻件试样中强化相是经过双级时效(720 ℃/8 h+620 ℃/8 h)后才得到的,说明 HDR-LMD 试样中强化相的体积分数显著低于锻件试样。

图 7 高沉积率激光熔覆沉积 GH4169 合金试样的透射图。(a)颗粒相的透镜照片;(b)颗粒相的选区电子衍射图谱 (绿色代表 γ'相,蓝色代表 γ"相,红色代表基体)

Fig. 7 Transmission image of HDR-LMDed GH4169 alloy sample. (a) TEM image of granular phase; (b) selected area electron diffraction pattern of granular phase, with green indicating γ' phase, blue indicating γ'' phase and red indicating matrix

3.3 拉伸性能

高沉积率激光熔覆沉积 GH4169 合金试样中 微观组织的变化会引起沉积态组织拉伸性能的改 变。沿着激光熔覆沉积 GH4169 合金试样的沉积 方向取样并进行室温拉伸测试,共设计三组拉伸实

验,求取平均值,以表征高沉积率 GH4169 合金试 样的拉伸性能。实验结果见表 4,测试结果显示,高 沉积率 GH4169 合金沉积态试样的平均抗拉强度 和屈服强度分别约为 973.8 MPa 和 695.48 MPa,延 伸率和断面收缩率约为 12.3%和 31.65%。

衣 4	向仉帜半傲兀焰復仉帜	GH4109	宣金的<u></u><u></u>迎押性能

`abl	e 4	: .	Fensile	e per	formance	e of	HDR-I	_MDed	GH4	169	alloy
------	-----	-----	---------	-------	----------	------	-------	-------	-----	-----	-------

Material	Test	Ultimate	Yield		Reduction of area / %	
condition	temperature $/^{\circ}\!C$	strength /MPa	strength /MPa	Elongation / 70		
HDR-LMD	25	973.8	695.48	12.3	31.65	
Wrought standard	25	1340.0	1100.00	12.0	15.00	

高沉积率激光熔覆沉积 GH4169 合金在 25 ℃ 下的拉伸宏观断口形貌和微观组织结构如图 8 所 示。从宏观断口形貌来看,拉伸断口呈现出典型的 韧性断裂特征,如图 8(a)所示。高沉积率 GH4169 高温合金试样拉伸断口的纤维区分布有大量无方向 性规则排列的韧窝,如图 8(b)所示。激光熔覆沉积 GH4169 合金枝晶间存在大量的块状 Laves 相, Laves 相在室温或较低温度下的塑性变形能力极差; 另外,由于拉伸实验过程时间短,应变速率较大,因此 Laves 相作为一种脆性相,极易造成塑性变形的不协 调从而引起位错,且容易塞集在 Laves 相周围,形成 应力集中,最终在拉伸过程中几乎不发生塑性变形就 发生有限滑移,导致整个 Laves 相破碎,为裂纹的起 源和扩展提供了有利的位置^[22-23]。因此,微孔容易在 Laves 相附近区域形成,随后微孔通过长大及相互连 接引起最终断裂,如图 8(c)所示。虽然高沉积率沉积 态试样中有强化相析出,但是强化相的体积分数较小 且分布不均匀,且在应力加载下由非均匀强化相引起 的局部应力集中将导致 Laves 相优先断裂,因此高沉 积率 GH4169 合金试样的强度和塑性均低于锻件标

图 8 高沉积率 GH4169 合金在 25 ℃下的拉伸断口形貌。(a)宏观断口;(b)断口横截面形貌;(c)断口纵截面形貌 Fig. 8 Tensile fracture morpholoy of HDR-LMDed GH4169 alloy at 25 ℃. (a) Macro-fracture; (b) cross-sectional profile of fracture; (c) longitudinal profile of fracture

准。同时,在所有的断口上都可以看到枝晶间存在大量的二次裂纹,如图 8(b)所示。二次裂纹的产生是静载拉伸过程中处于有利取向的 Laves 相的应力达到临界分切应力导致自身滑移造成的。

4 结 论

利用 HDR-LMD 技术制备了 GH4169 合金,观测其微观组织和拉伸性能,得到了如下结论。

1) 高沉积率激光熔覆沉积 GH4169 高温合金 的沉积态组织为外延生长的柱状晶,柱状晶的定向 性很强,排列非常规整,且一次枝晶间距约为 12 μm。

2) 在高沉积率激光熔覆沉积 GH4169 高温合 金沉积态组织中观察到块状 Laves 相、针状 δ 相、γ" 和 γ'强化相。Laves 相的长度为 2~10 μm,主要析 出于枝晶间。针状 δ 相在 Laves 相与晶界上均有析 出。强化相虽然有析出,但其分布不均匀。

3) 高沉积率激光熔覆沉积 GH4169 高温合金的抗拉强度和屈服强度分别约为 973.8 MPa 和 695.48 MPa,延伸率和断面收缩率约为 12.3% 和 31.65%。HDR-LMD 试样的强度和塑性均低于锻件标准。

尽管高沉积率激光熔覆沉积 GH4169 合金的 沉积态组织中已观察到针状 δ 相及 γ^{''}和 γ[']强化相, 但拉伸结果表明沉积态合金的强度和塑性均低于锻 件标准。因此,需探究适用于 HDR-LMD 技术的热 处理方法,对沉积态组织进行热处理来提高沉积态 合金的强度和塑性,从而使高沉积率激光熔覆沉积 GH4169 合金的力学性能达到甚至优于锻件标准。

参考文献

[1] Zhang L Y, Tang H B, Wang X M, *et al*. Basic research on laser near-net forming of large complex high-performance graded titanium alloy structural components: an interim report [J]. Science and Technology Innovation Herald, 2016, 13(13): 177. 张凌云,汤海波,王向明,等.大型复杂梯度材料高 性能钛合金构件激光近净基础研究报告[J]. 科技创 新导报, 2016, 13(13): 177.

- [2] Wang H M. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components [J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698.
 王华明.高性能大型金属构件激光增材制造:若干材 料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.
- [3] Huang W D. Laser rapid prototyping of dense metal parts with high performance and complex structure
 [J]. Rare Metal Materials and Engineering, 2005 (34): 543-546.
 黄卫东.高性能复杂结构致密金属零件的激光快速

成形[J]. 稀有金属材料与工程, 2005(34): 543-546.

 Qi Y A, Zhao J F, Xie D Q, et al. Flexural property of GH4169 nickel-based superalloy by laser repair
 [J]. Chinese Journal of Lasers, 2013, 40 (11): 1103009.

戚永爱,赵剑峰,谢德巧,等.激光修复 GH4169 镍 基高温合金的弯曲性能 [J].中国激光,2013,40 (11):1103009.

- [5] Pan H, Zhao J F, Liu Y L, et al. Controllability research on dilution ratio of nickel-based superalloy by laser cladding reparation [J]. Chinese Journal of Lasers, 2013, 40(4): 0403007.
 潘浒,赵剑峰,刘云雷,等.激光熔覆修复镍基高温 合金稀释率的可控性研究[J].中国激光, 2013, 40 (4): 0403007.
- [6] Zhao J F, Cheng C, Xie D Q, et al. High-temperature tensile property of GH4169 nickel-based superalloys by laser repair [J]. Chinese Journal of Lasers, 2016, 43(8): 0802012.
 赵剑峰,成诚,谢得巧,等.激光修复 GH4169 镍基高温合金的高温拉伸性能 [J].中国激光, 2016, 43 (8): 0802012.

[7] Bian H Y, Zhai Q X, Li Y, et al. Microstructure and tensile properties of laser deposition repair GH738 superalloy [J]. Chinese Journal of Lasers, 2017, 44(10): 1002003.
卞宏友, 翟泉星, 李英, 等. 激光沉积修复 GH738

高温合金的组织与拉伸性能[J].中国激光, 2017, 44(10): 1002003.

[8] Bian H Y, Dong W Q, Wang S J, et al. Experimental study on laser deposition repair of surface damage of GH4169 thin-walled components [J]. Chinese Journal of Lasers, 2016, 43 (10): 1002002.

卞宏友,董文启,王世杰,等.GH4169 薄壁零件表 面损伤的激光沉积修复试验研究[J].中国激光, 2016,43(10):1002002.

- [9] Wang Z M, Guan K, Gao M, et al. The microstructure and mechanical properties of deposited-IN718 by selective laser melting [J]. Journal of Alloys and Compounds, 2012, 513(2): 518-523.
- [10] Bian H Y, Zhao X P, Qu S, et al. Effect of heat treatment on high temperature tensile properties of laser deposition repair GH4169 superalloy [J]. Chinese Journal of Lasers, 2016, 43(1): 0103008.
 卞宏友,赵翔鹏,曲伸,等. 热处理对激光沉积修复 GH4169 合金高温性能的影响[J]. 中国激光, 2016, 43(1): 0103008.
- [11] Feng L P, Huang W D, Li Y M, et al. Investigation on the microstructure and composition segregation of the laser metal forming directional solidification[J]. Acta Metallurgica Sinica, 2002, 38(5): 501-506.
 冯莉萍,黄卫东,李延民,等.激光金属成形定向凝 固显微组织及成分偏析研究[J].金属学报, 2002, 38(5): 501-506.
- Zhang Y C, Li Z G, Nie P L, et al. Effect of heat treatment on niobium segregation of laser-cladded IN718 alloy coating [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44(2): 708-716.
- [13] Sivaprasad K, Raman S G S. Influence of weld cooling rate on microstructure and mechanical properties of alloy 718 weldments [J]. Metallurgical and Materials Transactions A: Physical Metallurgy

and Materials Science, 2008, 39(9): 2115-2127.

- [14] Nie P, Ojo O A, Li Z G. Numerical modeling of microstructure evolution during laser additive manufacturing of a nickel-based superalloy[J]. Acta Materialia, 2014, 77(4): 85-95.
- [15] Wang X Q, Chou K. Effects of thermal cycles on the microstructure evolution of Inconel 718 during selective laser melting process [J]. Additive Manufacturing, 2017, 18: 1-14.
- [16] Han C X, Chen J, Zhang Q. Effect of heat recycle and annealing on microstructure of laser forming repairing TC17-TC11 dual alloy[J]. Applied Laser, 2012, 32(1): 8-12.
 韩昌旭,陈静,张强. 往复热循环及退火对激光成形 修复 TC17-TC11 双合金组织的影响[J].应用激光, 2012, 32(1): 8-12.
- [17] Zhong C L, Chen J, Linnenbrink S, et al. A comparative study of Inconel 718 formed by high deposition rate laser metal deposition with GA powder and PREP powder[J]. Materials & Design, 2016, 107: 386-392.
- [18] Zhong C L, Gasser A, Kittel J, et al. Microstructures and tensile properties of Inconel 718 formed by high deposition-rate laser metal deposition [J]. Journal of Laser Applications, 2016, 28(2): 022010.
- [19] Zhong C L, Gasser A, Kittel J, et al. Improvement of material performance of Inconel 718 formed by high deposition-rate laser metal deposition [J]. Materials & Design, 2016, 98: 128-134.
- Knorovsky G A, Cieslak M J, Headley T J, et al. Inconel 718: a solidification diagram [J]. Metallurgical Transactions A, 1989, 20(10): 2149-2158.
- [21] Radavich J F. The physical metallurgy of cast and wrought alloy 718[C] // Superalloys, 2004: 229-240.
- [22] Mills W J. Effect of heat treatment on the tensile and fracture toughness behaviour of Inconel 718 weldments[J]. Weld, 1984, 63(8): 237.
- [23] Sui S, Chen J, Fan E X, et al. The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718[J]. Materials Science and Engineering A, 2017, 695: 6-13.