Vol. 42, No. 12 December, 2015

光束偏移对Ti₂AlNb/TC4异种钛合金激光焊接 特性的影响

雷正龙 刘 鸣 张可召 陈彦宾

哈尔滨工业大学先进焊接与连接国家重点实验室,黑龙江哈尔滨150001

摘要 针对 $Ti_2AlNb/TC4$ 异种钛合金利用激光焊接焊缝容易产生气孔的问题,提出了采用激光光束偏移来焊接 Ti-22Al-27Nb 与 Ti-6Al-4V 异种材料的方法。试验结果表明,光束偏向 Ti-22Al-27Nb 侧时能够有效抑制焊缝中气孔 缺陷产生;光束居中及偏向 Ti-22Al-27Nb 一侧焊接时,焊缝相组成为 B2 相,光束偏向 Ti-6Al-4V 一侧进行焊接时,焊缝相组成为 $B2+\alpha'$ 相; Ti-22Al-27Nb 侧热影响区为单一的 B2 相, Ti-6Al-4V 侧热影响区为针状 α' 相和原始 α 相。由于激光光束偏向 Ti-6Al-4V 一侧时焊缝中针状 α' 相的第二相强化作用,使其抗拉强度及塑性高于光束居中和偏向 Ti-22Al-27Nb 一侧时的性能。

关键词 激光技术; Ti₂AlNb; TC4; 激光焊接; 光束偏置; 显微组织; 拉伸性能

中图分类号 TG456.7 文献标识码 A

doi: 10.3788/CJL201542.1203008

Effect of Laser Beam Displacement on Characteristics of Laser Welded Ti₂AlNb/TC4 Dissimilar Alloy

Lei Zhenglong Liu Ming Zhang Kezhao Chen Yanbin

State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China

Abstract In view of the high porosity susceptibility in laser welded $Ti_2AlNb/TC4$ dissimilar alloy, different beam displacements are applied in laser welding of Ti-22Al-27Nb and Ti-6Al-4V alloy. The results show that porosity can be successfully suppressed when laser beam acts on Ti-22Al-27Nb alloy. The fusion zones consist of B2 and B2+ α' when the beam acts on Ti-22Al-27Nb band Ti-6Al-4V alloy, respectively. The heat affected zone (HAZ) of Ti-22Al-27Nb is entirely composed of B2. A mixture of acicular α' and primary α are formed in the HAZ of Ti-6Al-4V alloy. Due to the second phase strengthening of acicular α' in the fusion zone when laser acts on Ti-6Al-4V alloy, the welded joint exhibits higher tensile strength and ductility compared with those produced when the beam acts on Ti-22Al-27Nb alloy or at the middle of two base metals.

Key words laser technique; Ti₂AlNb alloy; TC4 alloy; laser welding; beam displacement; microstructure; tensile properties

OCIS codes 140.3390; 160.3900; 350.3390

1 引 言

Ti₂AlNb基合金作为最新的一种有序斜方晶系钛铝金属间化合物,相较于TiAl、Ti₃Al等具有较高的比强度、断裂韧性和高温抗氧化等良好性能,是具有发展前景的航空高性能材料之一^[1-2]。TC4是具有比强度高、塑性好和易焊接等优点的α+β型钛合金,在航空航天领域应用十分广泛^[3-4]。宇航使用的大多为复杂构件,有些情况会遇到Ti₂AlNb/TC4异种材料的焊接^[5]。目前国内外对Ti₂AlNb/TC4系列异种钛合金焊接特性的研究较少,主要集中在电子束焊接和激光焊接工艺上^[6-11]。西北工业大学姚泽坤等开展了Ti-24Al-15Nb-1.5Mo/

收稿日期: 2015-04-27; 收到修改稿日期: 2015-07-05

基金项目: 中国航天支撑基金

作者简介: 雷正龙(1977—),男,副教授,博士生导师。主要从事激光-电弧复合焊接基础与应用、特种材料激光焊接、激光焊接过程质量监测与智能控制等方面的研究。E-mail: leizhenglong@hit.edu.cn

TC11 异种合金电子束焊接研究,发现可得到成形良好的焊缝,但对组织性能分析较少,同时其研究的 Ti-22Al-25Nb/TC11 异种合金电子束焊接焊缝组织为 α_2 +O+B2 三相,拉伸试样均断裂在 TC11 侧;哈尔滨工业大学雷正龙等研究的 Ti-22Al-25Nb/TC4 激光焊接技术,焊缝中存在一定的气孔缺陷,拉伸强度可达到 TC4 母材(BM)的 90%,但是延伸率只为母材的 40%。同时,本课题组在前期的研究中发现,激光焊接 TC4 合金时气孔倾向较严重,但焊缝性能较好;而激光焊接 Ti₂AlNb 基合金时焊缝基本没有气孔,但焊缝存在严重脆性,因此,针对 Ti₂AlNb/TC4 异种钛合金激光焊接焊缝容易产生气孔及力学性能变化的问题,提出研究在不同光束偏移情况下的 Ti2AlNb/TC4 异种钛合金激光焊接特性。

本文研究了激光光束偏移对Ti₂AINb/TC4焊缝接头的影响,初步分析了偏移位置对接头组织、性能和焊接气孔的影响,为优化Ti₂AINb/TC4异种合金激光焊接工艺提出了一种新途径。

2 试验条件

试验采用材料为 1 mm 厚的 Ti-22Al-27Nb (原子数分数,%)的固溶态板材和 Ti-6Al-4V 热轧态板材,组织显微结构如图 1 所示。图 1(a)为 Ti-22Al-27Nb 固溶态板材组织,母材中均为 B2 相;图 1(b)为 TC4 热轧态板材组织,其中 β 相均匀分布在基体 α 上。两种母材的具体化学成分如表 1 所示。

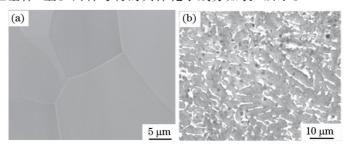


图 1 母材显微组织。 (a) Ti-22Al-27Nb 合金; (b) Ti-6Al-4V 合金

Fig.1 Microstructure of base metals. (a) Ti-22Al-27Nb alloy; (b) Ti-6Al-4V alloy 表 1 母材化学成分(质量分数,%)

Table 1 Chemical composition of base metals (mass fraction, %)

Alloys	Elements						
	Ti	Al	Nb	V	O	N	Н
Ti-22Al-27Nb	41.65	9.64	44.18	4.42	≤0.08	≤0.02	≤0.01
Ti-6Al-4V	84.63	7.14	2.48	5.75	_	_	_

焊接试样尺寸为150 mm×25 mm×1 mm,焊前首先经过 Kroll 试剂(体积分数,3% HF+37% HNO₃+60% H₂O)进行酸洗以清除表面氧化膜及油污,然后用丙酮清洗后放在80℃的烘干箱中烘干1 h。焊接实验采用德国ROFIN-SINAR公司的DC030型扩散冷却式CO₂激光器,其最大输出功率为3000 W,最小光斑直径为0.15 mm。采用的焊接工艺参数为:焊接功率700 W,焊接速度1 m/min。为更好的保护焊缝,在焊缝正、背面进行双面氩气保护,其中正面、背面保护气流量分别为15、5 L/min,焊接过程示意图如图2所示。在其他工艺参数相同的情况下,使光束分别偏向Ti₂AlNb-侧0.5 mm、居中及偏向TC4-侧0.5 mm进行三次焊接试

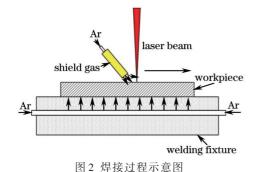


Fig.2 Schematic of welding process

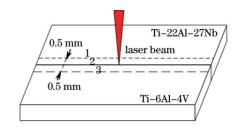


图 3 光東作用位置示意图 Fig.3 Schematic of laser beam acting position

验,光束作用位置如图3所示。

在 Olympus GX71 光学显微镜及 FEI Quanta-200 场发射扫描电子显微镜下观察接头组织,并通过 AXS D8 ADVANE X 射线衍射仪和 Tecnai G2 F30 型透射电子显微镜对焊缝组织进行物相确定。拉伸试样尺寸如图 4 所示,利用 INSTRON 5569 万能试验机测量焊缝接头的在室温下的拉伸性能,加载速率为 1 mm/min,并通过 HITACHI S-3400 扫描电子显微镜观察拉伸断口形貌。

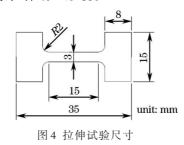


Fig.4 Dimensions of tensile test specimen

3 试验结果与分析

3.1 偏移量对焊缝成形的影响

图 5 为 Ti₂AlNb/TC4 异种钛合金激光焊接焊缝表面成形。焊缝表面为银白色,说明焊缝表面得到了较好的保护,同时表面成形光滑平整,没有咬边、裂纹、未熔合、未焊透等缺陷。进一步观察焊缝宏观金相,如图 6 所示,光束偏向 TC4 一侧和光束居中时的 Ti₂AlNb/TC4 激光焊,焊缝中存在一定数量的气孔,光束偏向 Ti₂AlNb 一侧时,焊缝中没有气孔缺陷。为了进一步分析气孔形成特征,进行了 TC4 对接接头和 Ti₂AlNb 对接接头同种材料的激光焊接,宏观金相如图 7 所示。试验发现在 TC4 对接焊时,焊缝中存在较多的气孔缺陷,而 Ti₂AlNb 对接焊缝中没有出现气孔,这也表明 Ti₂AlNb/TC4 激光焊接过程中气孔可能主要与 TC4 合金的材料焊接特性有关,至于具体原因还有待进一步深入研究。

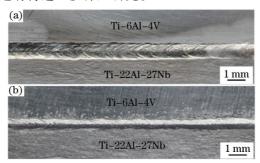


图 5 焊缝表面成形。(a)焊缝正面;(b)焊缝背面

Fig.5 Bead appearance of welded joint. (a) Front bead; (b) back bead

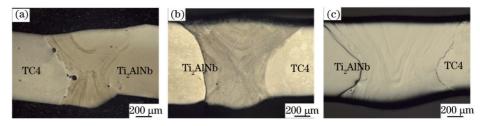


图 6 光束偏移对 Ti₂AlNb/TC4激光焊缝气孔的影响。 (a) 光束偏 TC4—侧; (b) 光束居中; (c) 光束偏 Ti₂AlNb—侧 Fig.6 Effect of laser beam displacement on porosity of welded joint. (a) Beam acting on TC4 alloy; (b) beam acting at middle of two base metals; (c) beam acting on Ti₂AlNb alloy

2.2 光束偏移对焊缝组织的影响

2.2.1 焊缝组织分析

图 8 为光束偏移情况时 Ti₂AlNb/TC4 异种钛合金激光焊接焊缝熔合区(FZ)组织。可以看出,光束偏向

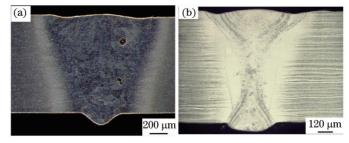


图 7 (a)TC4 对接和(b)Ti2AlNb 对接接头激光焊缝宏观金相

 $Fig. 7 \ \ Cross-section \ profile \ of \ butt \ welded \ joint \ of \ (a) \ TC4 \ and \ (b) Ti_2AlNb \ alloy$

Ti₂AINb 和光東居中时,在熔合线附近由于较大的成分过冷,熔池结晶为明显的柱状晶,随着成分过冷度的降低,熔池在焊缝中心结晶成等轴晶。虽然可明确的判断熔池结晶行为,但没有明显的相组织,考虑到母材为固溶态 Ti₂AINb,焊缝组织可能为单一的 B2/β相。而光束偏向 TC4时相组织与前两者有明显的不同,焊缝中有针状α′相组织,如图 8(d)所示。这是因为光束偏置于 TC4一侧时,高能量密度的激光使得 TC4 母材迅速熔化,且其在该区域相对 Ti₂AINb 母材熔化较多,β相稳定元素 Nb 的含量较低,在随后的冷却过程中,实际冷却速度大于α相的极限冷却速度,β相来不及转变成α相,而是转变成针状的马氏体α′相。

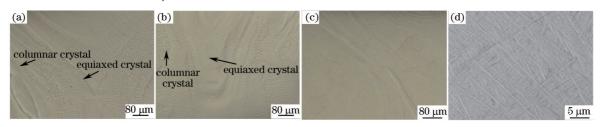


图 8 焊缝组织金相。 (a) 光束偏 Ti₂AlNb侧; (b) 光束居中; (c) 光束偏 TC4侧; (d) 光束偏 TC4时焊缝中的针状α′相组织 Fig.8 Microstructure of weld. (a) Beam acting on Ti₂AlNb alloy; (b) beam acting at middle of two base metals;

(c) beam acting on TC4 alloy; (d) acicular α' in the fusion zone when laser beam acts on TC4 alloy

图 9 为焊缝组织的 XRD 分析。物相检索结果表明,光束居中和光束偏向 Ti_2AINb —侧时,焊缝中的相成分均为单一的体心立方结构的 $B2/\beta$ 相。出现这种情况的原因可能主要是因为激光能量输入使熔池组织为 $B2/\beta$ 相,在随后的冷却过程中,过快的冷却速度使得熔池中的 $B2/\beta$ 相来不及向其他相转变,只是部分无序的 β 相转变为有序的 B2,使得焊缝相组成为单一的 $B2/\beta$ 相。

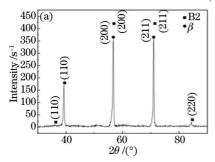


图 9 Ti₂AlNb/TC4焊缝的 X 射线衍射谱。 (a) 光束偏 Ti2AlNb 侧 XRD 物相分析; (b) 光束居中 XRD 物相分析

Fig.9 XRD pattern of the Ti₂AlNb/TC4 weld. (a) Beam acting on Ti₂AlNb alloy; (b) beam acting at middle of two base metals

图 10 为焊缝组织的透射电子显微镜分析结果。图 10(a)为光束居中焊缝组织形貌,组织尺寸粗大,衍射花样标定结果确定焊缝组织为 B2 相,并未发现其他相结构。确定光束居中及光束偏 Ti₂AINb 侧焊缝中组织均为单一的 B2 相。而在光束偏向 TC4 时,如图 10(c)所示,可以看到,焊缝中出现了板条状的组织形貌,其中黑色的为 B2 相,亮白色的为针状 α' 马氏体。对衍射花样进行标定,确定光束偏向 TC4 时焊缝组织为 B2/ β 相和 α' 相,与金相结果一致。

2.2.2 热影响区组织分析

图 11 为 Ti₂AINb 侧热影响区(HAZ)金相图片与扫描电镜(SEM)图片。由于 Ti₂AINb 母材为固溶态,故观察

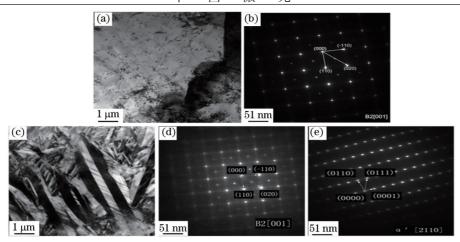


图 10 焊缝组织的 TEM 分析。 (a) 光束居中时焊缝相组织形貌; (b) 光束居中时焊缝中 B2 相衍射花样; (c) 光束偏 TC4 侧时焊缝 组织形貌; (d) 光束偏 TC4 侧时焊缝 B2 相衍射花样; (e) 光束偏 TC4 侧时焊缝 α′相衍射花样

Fig.10 TEM of weld microstructure. (a) Microstructure of weld when beam acts at middle of two base metals; (b) diffraction pattern of B2 phase when beam acts at middle of two base metals; (c) microstructure of weld when beam acts on TC4 alloy; (d) diffraction pattern of B2 phase when beam acts on TC4 alloy; (e) diffraction pattern of α' phase when beam acts on TC4 alloy

到 Ti_2AINb 侧热影响区为成分均匀一致的组织,且确定该组织为 $B2/\beta$ 相。这是因为在熔池冷却过程中,其冷却速度大于 CCT 曲线中得到 $B2/\beta+O$ 相的极限冷却速度为 120~K/s,高温下的 $B2/\beta$ 相没有足够的时间向其他组织转变,故形成单一 $B2/\beta$ 相的热影响区。

图 11 Ti₂AlNb 侧热影响区组织图。 (a) 热影响区光学照片; (b) 热影响区的 SEM 图

Fig.11 Microstructure of HAZ of Ti₂AlNb alloy. (a) Optical micrograph of HAZ; (b) SEM micrograph of HAZ

图 12 为 TC4 侧热影响区组织。从图中可以看出, TC4 侧热影响区主要由针状 α '相和原始 α 相两种组织组成,其中 α '马氏体形成了典型的网篮组织。靠近焊缝的热影响区在高能量的光束作用下,全部转变为 β 相,熔池凝固过程中冷却速度很快, β 相随着温度降低并未转变为 α 相,而是转变为针状 α '相的马氏体组织。在远离焊缝的热影响区,加热升高的温度较低,部分 α 相未发生转变,直接保留下来。

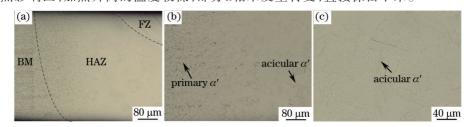


图 12 TC4侧热影响区组织图。(a) 热影响区低倍; (b) 热影响区组织; (c) 针状α'相高倍

Fig.12 Microstructure of HAZ of TC4 alloy. (a) HAZ at low magnification; (b) microstructure of HAZ; (c) acicular α' at high magnification **2.3** 光束偏移对力学性能的影响

表 2 为 Ti₂AINb/TC4 异种钛合金激光焊接接头在室温下的拉伸结果。不难发现,不同的光束偏移对焊接接头的拉伸性能影响不同,偏向 TC4 时接头抗拉强度和延伸率最高,而偏向 Ti2AINb 一侧抗拉强度和延伸率最低,光束居中的接头的拉伸性能居中。分析认为,焊缝接头在室温中性能与焊缝中相组成有关,焊缝组织为粗大的 B2 相柱状晶时,变形时晶粒间相互协调能力较差,抗拉强度及延伸率都相对较低;当焊缝中有针状

α′马氏体时,第二相强化作用提高了抗拉强度。光束居中及光束偏向 Ti₂AlNb 一侧时,焊缝中为单一的 B2 相,晶粒粗大且不存在第二相强化作用,焊缝抗拉强度与延伸率较低;光束偏向 TC4 一侧时,焊缝组织存在针状α′相,第二相强化作用使其强度达到 TC4 母材的 95%以上,且其延伸率略高于 Ti₂AlNb 母材。

表2 Ti₂AlNb/TC4对接接头室温拉伸结果

Table 2 Tensile properties of Ti₂AlNb/TC4 butt welded joint at room temperature

	Tensile strength /MPa	Elongation /%	Fracture position
Act on TC4 side	1001	8.73	FZ
Act on Ti ₂ AlNb side	938	4.82	FZ
In the middle	951	5.43	FZ
TC4 base metal	1017	12.08	-
Ti ₂ AlNb base metal	1154	7.67	-

图 13 为焊接接头室温拉伸试样断口 SEM 形貌。图 13(a)和 13(b)中同时存在一定数量的解理台阶和韧窝,当光束居中时相较于光束偏向 Ti₂AlNb侧时韧窝的比例明显增大;从图 13(c)中可以看出当光束偏向 TC4一侧时,断口基本上以韧窝为主,表明断裂方式为韧性断裂,是由于焊缝中存在的α′相的第二相强化作用造成的,同时光束偏向 TC4一侧时拉伸强度和延伸率较高。

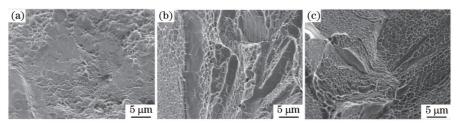


图 13 接头室温拉伸断口形貌。 (a) 光束偏向 Ti₂AlNb—侧; (b) 光束居中; (c) 光束偏向 TC4—侧 Fig.13 SEM image of joint after tensile test at room temperature. (a) Beam acting on Ti₂AlNb alloy;

(b) beam acting at middle of two base metals; (c) beam acting on TC4 alloy

3 结 论

- 1) Ti₂AINb/TC4异种钛合金激光焊接可以得到表面成形良好的焊缝,在光束居中和偏向TC4时,焊缝中出现了一定数量的气孔,而在偏向Ti₂AINb一侧时焊缝中没有出现气孔缺陷。
- 2) 光東居中和偏向 Ti_2AINb —侧时, 焊缝中心为单一的 $B2/\beta$ 相; 而光束偏置 TC4时, 焊缝中心为 $B2/\beta$ 相 和针状 α' 相的双相组织; TC4 侧热影响区为针状 α' 相和原始 α 相的混合组织; Ti_2AINb 侧热影响区为单一的 $B2/\beta$ 相。
- 3) 光束偏 TC4侧时,激光焊缝拉伸强度和延伸率最高,其次为光束居中时,光束偏向 Ti_2AINb 一侧时最低。光束偏向 TC4 时焊缝中存在针状 α' 相,第二相强化作用使其抗拉强度达到 TC4 母材的 95%以上,且延伸率略高于 Ti_2AINb 母材。

参考文献

- 1 Boehlert C J, Majumdar B S, Seetharman V, et al.. The microstructural evolution in Ti-Al-Nb O+Bcc orthorhombic alloys[J]. Metal Urgical and Materials Transactions A, 1999, 30(9): 2305–2323.
- 2 Feng Aihan, Li Bobo, Shen Jun. Recent advances on Ti₂AlNb-based alloys[J]. Journal of Materials and Metallurgy, 2011, 10(1): 30-38. 冯艾寒, 李渤渤, 沈 军. Ti₂AlNb基合金的研究进展[J]. 材料与冶金学报, 2011, 10(1): 30-38.
- 3 Zhu Xiujun, Xiong Jiangang. Laser welding of TC4 Ti alloy[J]. Electric Welding Machine, 2004, 34(9): 13-16. 朱秀军, 熊建刚. 钛合金 TC4的激光焊接[J]. 电焊机, 2004, 34(9): 13-16.
- 4 Dong Zhijun, Lei Zhenglong, Chen Yanbin. Microstructure and mechanical properties of laser welded TC4 alloys[J]. Aerospace Manufacturing Technology, 2012, 2(1): 27-30.
 - 董智军, 雷正龙, 陈彦宾. 激光焊接 TC4 钛合金组织性能研究[J]. 航天制造技术, 2012, 2(1): 27-30.
- 5 Yu Gang, Zhao Shushen, Zhang Yongjie. Research on key issues of laser welding of dissimilar metal[J]. Chinese J Lasers, 2009, 36 (2): 261-267.

- 虞 钢, 赵树森, 张永杰. 异种金属激光焊接关键问题研究[J]. 中国激光, 2009, 36(2): 261-267.
- 6 Zhang Jian, Yang Rui. Control of laser power during titanium alloy thin plate welding[J]. Chinese J Lasers, 2012, 39(1): 0103003.
 - 张 健, 杨 锐. 激光焊接钛合金薄板时的功率控制[J]. 中国激光, 2012, 39(1): 0103003.
- 7 Ma Ran, Dong Bizhe, Wu Shikai, et al.. Study on fiber laser-tungsten innert gas welding of titanium sheet[J]. Chinese J Lasers, 2014, 41(5): 101-106.
 - 马 然, 董皕喆, 吴世凯, 等. 薄板钛合金光纤激光钨极惰性气体保护焊电弧复合焊接工艺研究[J]. 中国激光, 2014, 41(5): 101-106.
- 8 Zhang H T, He P, Feng J C, et al.. Interfacial microstructure and strength of the dissimilar joint Ti3Al/TC4 welded by the electron beam process[J]. Materials Science and Engineering A, 2006, 425: 255-259.
- 9 Tan L J, Yao Z K, Zhou W. Microstructure and properties of electron beam welded joint of Ti-22Al-25Nb/TC11[J]. Aerospace Science and Technology, 2010, 14: 302-306.
- 10 Yao Z K, Guo H Z. Microstructure and property of the Ti-24A1-15Nb-1.5Mo/TC11 joint welded by electron beam welding[J]. International Journal of and Materials, 2009, 16(5): 568-575.
- 11 Z L Lei, Z J Dong, Y B Chen. Microstructure and mechanical properties of laser welded Ti-22Al-27Nb/TC4 dissimilar alloys[J]. Materials Science & Engineering A, 2013, 559: 909-919.

栏目编辑: 宋梅梅