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Multiscale Fusion of Wavelet-Domain Information and
Clustering Analysis for Digital Halftoning

He Zifen' Zhang Yinhui'® Zhan Zhaolin® Wang Sen'

' Faculty of Mechanical and Electrical Engineering , Kunming University of Science and Technology ,
Kunming, Yunnan 650500, China
* Faculty of Materials Science and Engineering , Kunming University of Science and Technology ,

Kunming, Yunnan 650093, China

Abstract A novel approach to improve the halftoning image quality by a mixture distortion criterion is the
combination of a edge weighted least squares depending on the fusion multiscale information and the region weighted
least squares depending on the improved K-means clustering method. The multiscale characterization of the original
image using the discrete wavelet transform is obtained. The boundary information of the target image is fused by the
wavelet coefficients of the correlation between wavelet transform layers. to increase the pixel resolution scale. The
inter-scale fusion method to gain fusion coefficient of the fine-scale is applied, which takes into account the detail of
the image and approximate information, where the fusion coefficient is referred to as the weighting operator., and to
establish the boundary energy function. The improved K-means clustering method is used to segment an image
several regions and the new energy function is constructed using the weighted least squares method, which the
reciprocal of the variance of the segmented regions are referred to as the weighting operator to establish the region
energy function. In the halftone process, each clustering uses the weighted least-squares method through energy
minimization via direct binary search algorithm, to gain halftoning image. Simulation results on typical test images
further confirm the performance of the new approach.

Key words imaging processing; halftoning; multiscale information fusion; improved K-means clustering; weighted
least-squares; direct binary search
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1 Introdution halftoning would try to compute a pattern of binary dots
Many image rendering technologies only have binary to achieve the illusion of a multi-bit image. Halftone
output such as the laser engraving gravure, laser beam image contains a series of dots in a specific pattern that
printer, laser plate-maker and digital printer. Binary simulates the look of a continuous tone image. The
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multiscale fusion of wavelet-domain information and
clustering analysis ( MFWICA )
presented in this paper is a new halftone algorithm that

halftone algorithm

seeks to improve halftone image quality by enhancing
the gray image smoothness and sharpness between
regions and edges.

According to computational style, the halftoning

algorithms can be classified into three categories ' .

Neighborhood based methods, such as error diffusion™ ,
point based methods, such as screening™’ and look-up-

), which uses a

table™ and iterative optimization methods
human visual system model to minimize the perceived
error.

The goal of model-based halftoning techniques is to
exploit explicit models of the display device and the human
visual system (HVS) to maximize the quality of the
displayed images™ . The iterative techniques include one-
dimensional Viterbi algorithm to obtain the globally optimal
solution”,  blocking  with  branch and  bound
minimization™ , and diffusion-reaction model®’ . Least-
squares method-based ( LSMB )

attempts to produce an optimal halftone reproduction

halftoning approach
[10] .
In this paper, we extend this technique for the
proposed algorithm. The boundary information of the
target image is fused by the wavelet coefficients of the
correlation between wavelet transform layers, which to
increase the pixel resolution scale. We apply the inter-
scale fusion method to gain fusion coefficient of the fine-
scale, which takes into account the details of the image
establish the
boundary energy function. The complexity of the visual

and approximate informations and
tasks when viewing halftones prompts us to consider the
image to be comprised of features more complex than
simple edges. That is, we consider the image to be
comprised of regions, some that can be characterized by
local variations and some that can not. We seek to
identify these regions that contain texture and to render
to achieve different visual effects in the different parts

of the image in response to edge and region contents.

2  Multiscale
information

fusion wavelet-domain

2.1 Two-discrete wavelet transform
The Haar wavelet transform may be considered to
simply pair up the input values, storing the difference

and passing the sum™’.

This process is repeated
recursively, pairing up the sums to provide the next
scale, finally resulting in 2"~ differences and one final
sum.

Let ¢ denote scale function, {¢"",¢™ ,¢""} denote
the wavelet function. The scale function and wavelet
function form L°(R?) space orthogonal basis. The
image f(x,y), decomposed in the space domain with

the size of N X N, can be expressed as
N, —1

o y) =D up i (o) +

kij=0

J NG
2 2 wa.k,,so'{.k,,(l‘,y), (D

bEB j=1 k.i=0

where ¢/', . (x.y) = 277¢(x/2) — k,y/2 — i) and
Gy =27 (2/2 —k,y/2 —D), b€ B, B =
{LH,HL,HH} is the wavelet coefficients in three sub-
band directions, N, = N/2. The scale coefficients u, .,
and wavelet coefficients w’,, in j scale subband B
direction are given as

Upri = ﬂ‘f(layﬂﬁljlg, (x,y)dxdy,

W :ﬂf(l",y)gol,’,k.l(1’,y)d1‘dy, (2)

Given the scale and node of the wavelet coefficient
w’ ., » its father node is w’., (42,1127, [+ denotes round
are wf—l.z;:,zm

numbers, and its four sub-nodes

b h b
u’;—l.zmzul ’ wﬁ—sz 1,2i 9 and W1, 2841,2i41

The transform from spatial domain to wavelet domain
can provide a compact representation of the original

image. The multiscale information is shown in Fig.1.

Fig.1 Original image (a) and the four levels discrete wavelet transform (b)

We can see that most of the image energy compacted
onto a few wavelet coefficient, with large magnitudes
while most of the wavelet coefficients are very small.

This compact property allows us to capture the key
characteristics of an image from a few large wavelet
coefficients.
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2.2 Wavelet coefficients fusion

Since most of the wavelet coefficients have small values,
only a few wavelet coefficients have large values. Upon the
assumption that the wavelet coefficients are mutually
independent, they are normalized. The boundary

information of the target image is fused by the wavelet

(al) (a2)

(2)

()

(cD) (c2)

coefficients of the correlation between wavelet transform
layers to increase the pixel resolution scale. We apply the
inter-scale fusion method to gain fusion coefficient of the
fine-scale, which takes into account the details of the image
and approximate information. The fusion information of

inter-scale wavelet coefficients is shown in Fig. 2.

Fig.2 Fusion information of inter-scale wavelet coefficients for (a) HL. (b) LH and (¢) HH sub-bands. (al),(bl), (cl)
4-scales wavelet coefficients, (a2),(h2),(c2) 4- scales wavelet coefficients normalized, (a3),(b3),(c3) scale 0 and
1 fusion. (a4),(b4),(c4)scale 0,1 and 2 fusion, (ab),(b5),(c5) scale 0 ,1.2 and 3 fusion (a6).(h6),(c6) scale 0,
1, 2,3 and 4 fusion

3 Image segmentation

Fast global K-means clustering algorithm is an
improved global K-means clustering algorithm by
Aristidis Likas™* .

We use the improve K-means clustering that needs to
determine the number of cluster classes and distance
measurements to determine the degree of similarity
between pixels and classes. The gray image is
partitioned into two, three and four regions via the
improved K-means image segmentation method. Each
label shows a different class. Seen from Fig. 3, there are
two , three and four regions generated by the clustering,

-

Table 1 Pixels statistics for each cluster
Cluster 1/c
1 K=1 0.0039
2 K=1 0.0014
K=1] 0.0009
3 K=1 0.0027
K=1 0.0017
K=11 0.0025
4 K=1] 0.0065
K=1 0.0060
K=11 0.0033
K= 0.0020

Fig.3 Image labels by cluster index K. (a) K=2; (b) K=3; (¢) K=4
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which the original image gray value display area of each
block and the outside the gray area are shown as 0. The
statistics of the mean and variance of the gray-scale pixel of
each clustering are calculated. They are shown in Table 1.

4 Energy function minimization
We will use the term contrast sensitivity here, since we
have wused this terminology throughout Mannos and
Sakrison® proposed a model of the human contrast
sensitivity function, and found the following filter
frequency response to be good for predicting the subjective
quality of the coded images.
H,(f) =2.6X(0.0192+0.114/,) X
exp[— (0.114 )", (3)
f. in Eq. (3) is the spatial frequency of the visual
stimuli given in cycles/degree. The function has a peak
value 1 approximately at f, = 8.0 cycles/degree, and is
meaningless for frequencies above 60 cycles/degree.
LSMB halftoning attempts to produce an optimal

09 In this article, we will use

halftoned reproduction
the following notation. Suppose we are given a gray-
scale image [ x;; ], where x,,; denotes the pixel located
at the i-th column and the j-th row of a grid. The gray
level of each pixel varies from 0 equal to white to 1
equal to black. Assuming that the image has been
sampled, there is one pixel per dot to be generated.
Thus the gray-scale image array [x;;] and the binary
image array [ b, ] have the same dimensions. We are
also given a printer model with the sliding-window form
and an eye model of the form with a memory-less
nonlinearity n(+) followed by an FIR filter with impulse
response [ 4, ;]. In the LSMB approach we seek the
halftone image that minimizes the squared error.

E= >1(z, —w.,)s (4)
where =, = n(a.) b’y s wn, = n(po) % hiy s pry =
P(W,;), W, is composed of b, , its neighbors and *

indicates convolution. Note that we have allowed
different impulse responses %, ; h/,,‘, for the eye filters
corresponding to the halftone and continuous-tone
images respectively. The boundary conditions assume
that no ink is placed outside the image borders.

Weighted least squares model-based regression is
useful for estimating the values of model parameters
when the response values have different degrees of
variability over the combinations of the predictor
values™’ . Optimal results that minimize the uncertainty
in the parameter estimators are obtained when the
weights used to estimate the values of the unknown
parameters are inversely proportional to the variances
at each combination of predictor variable values oi cc
1/6%.

In the proposed approach, we seek the halftone image
that minimizes the weighted squared error

! |
E, = { > (LH,HL.HH + >} > (2, —w, )"
=1 k=1 isj
(5

The £ (£ = 1,2,3,4) are weighting operators and *
indicates convolution. Note that we have allowed different
impulse responses for the eye filters corresponding to the
halftone and continuous-tone images.

The goal of DBS is to determine the binary halftone
image g[ m ., n ] such that the difference between the
perceived versions of the original gray-scale image and
the rendered halftone is minimized*’. As a measure of
the difference, the total squared error is equal. We
model the low pass characteristic of the eye with a
luminance spatial frequency response function.

We compute this error efficiently by computing first
the autocorrelation function of the filter, ¢,, and the
correlation between the error and the filter, c¢,,. The
error is a function of those two. Each time we try a
change, then we can evaluate the consequences of this
change on the error by using only four values of these
matrix. If the change we tried effectively reduces the
error, it is accepted, and this time we need to change
as many values of ¢,, as there are valuesinc,,. Thisis
acceptable though., because especially in the last passes
over the image, we try much more changes than the
number we accept.

5 Experimental results and discussions

The input x(7,j) is a grayscale image quantized to
256 discrete gray levels normalized to 1. It is assumed
that x has dimensions N X N, where N is a power of 2.
In this paper, we use the °flowers’ image of sizes
256 X 256 to demonstrate the experimental results. All
halftones are generated and printed at a resolution of
300 inch™' and 24 inches viewing distance. We use the
MFWICA algorithm to obtain the halftone images. In
the experiment, we compare two algorithms: the
LSMB, and the proposed algorithm.

Fig.4 LSMB halftoning
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The results show that this method achieves the better
quality halftones that combines smooth gray tone
reproduction and good edge and detail reproduction in
the same image. This is illustrated qualitatively in Fig.
5. They show the combination of desirable smooth and
sharp visual effects by applying the technique to a
“flowers” image. Fig. 4 shows the LSMB halftone
image. For comparison, Fig. 5 (a) ~ (d) show the
results of applying a “smooth” constraint, A, »A,,A; and
Ay » at every pixel in the image and the results of
applying a “ sharp” constraint of wavelet fusion
parameters inter-scale at every pixel in the image. On
testing with many images, we confirm it when
comparing the quality measurements of halftone images
with MSE and PSNR. The test results are shown in
Table 2. It is clear from both Table 2 that the proposed

(al) (a2)

(c1) ' (c2)

(an - (d2)

algorithm achieves consistently lower values of MSE
than the LSMB algorithm, and with the increase in
cluster partition, the value of MSE is also decreases.
We can be seen from Table 2 that the proposed
algorithm achieves consistently higher values of PSNR
than the LSMB algorithm, and with the increase in
cluster partition, the value of PSNR are also increase.

The parameter that needs to be selected is the
termination condition in the experiment., which is selected
as 107 during the running of the program. The result is
illustrated in Fig. 6. Note that all of the convergence errors
dropped down to the termination condition within 15
iterations. The proposed algorithm is terminated with 8
iterations. Therefore the convergence of the proposed
algorithm is relatively rapid.

(@3)

(d3) ' d4)

Fig.5 Proposed algorithm in (a) K =1 with weighted operator A, ,» (b) K =2 with weighted operators A, and A, , (¢) K =3 with
weighted operators A; » A, and A; , (d) K =4 with weighted operators A, , A, » A; and A,. (al),(bl),(cl),(dl) halftoning
scales 0 and 1 fusion, (a2),(bh2),(c2),(d2) halftoning scales 0, 1 and 2 fusion, (a3),(h3),(c3),(d3) halftoning scales 0,1,
2 and 3 fusion, (a4),(b4),(c4),(d4) halftoning scales 0,1,2,3 and 4 fusion
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Table 2 Quality measurement of halftones with different algorithms in terms of MSE and PSNR

Algorithm Cluster Weighted operator Wavelet coefficients fusion MSE /103 PSNR /dB
LSMB 0.1261 27.12
Scale 0 and 1 0.1174 27.69
1 . Scale 0, 1 and 2 0.1156 27.79
' Scale 0, 1, 2 and 3 0.1143 28.86
Scale 0, 1, 2, 3 and 4 0.1055 29.92
Scale 0 and 1 0.0974 30.69
Scale 0, 1 and 2 0.0897 31.96
2 A and A,
Scale 0, 1, 2 and 3 0.0732 32.41
Scale 0, 1, 2, 3 and 4 0.0621 33.74
Proposed
Scale 0 and 1 0.0537 35.24
Scale 0, 1 and 2 0.0501 36.18
3 /11 ’ Ag al’ld A;
Scale 0, 1, 2 and 3 0.0485 36.99
Scale 0, 1, 2, 3 and 4 0.0402 37.05
Scale 0 and 1 0.0275 37.81
Scale 0, 1 and 2 0.0203 38.94
4 /\1 > /\2 s As and /‘\1
Scale 0, 1, 2 and 3 0.0121 39.06
Scale 0, 1, 2, 3 and 4 0.0071 39.84
12 2 R W Floyd, L Steinberg. An adaptive algorithm for spatial grey-
’ —+LSMB scale[J]. Proc SID, 1976, 17(2): 75— 77.
510 4 - K=1 3B E Bayer. An optimum method for two-level rendition of
508 /\ gz; continuous-tone pictures C]. IEEE Int Conf Commun, 1973, 1.
g / \ = 26.11 - 26. 15.
<]
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Fig.6 Comparison of the number of iterations for
the test image

6 Conclusion

In this work, we have proposed a multiscale
information fusion method of wavelet-domain for
halftoning. Our method can fusion the boundary
information presented in the approximation coefficients
and regional information presented in the improved K-
means clustering method. Therefore the energy term is
generated, which consists of both boundary and regional
terms. We have identified the " flowers" image and
tested the MSE and PSNR of the proposed method.
Quantitative evaluation of algorithm shows that our
method is superior to the LSMB method in the iterations
speed. Our future work will be emphasized on improved
optimize method of the multiscale energy functions

based algorithm.
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