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Abstract Total-reflection X-ray optics play an important role

in X-ray microscopy technology, and the study on their resolution limit is helpful for both designers and users.
Theoretical study on the resolution limit of total-reflection X-ray optics is presented based on the Heisenberg
uncertainty principle. The theoretical results show that the resolution limit of total-reflection X-ray optics depends on
material. The focal spot size limits of total-reflection X-ray optics made of nickel, lead glass and borosilicate glass are
3.2, 4.2 and 6.6 nm, respectively.
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1 Introduction

X-rays can be focused by materials.
several X-ray focusing optics which can provide a
microbeam with a diameter smaller than 100 nm. Such
optics may be divided into four categories such as
diffractive optics™’ , refractive optics, waveguides, and
reflective optics™ which include the Bragg reflection
X-ray optics and the total-reflection X-ray optics.
Fresnel zone plates based on the diffraction theory can
focus X-rays into a focal spot with a 30 nm diameter at
8.3 keV™ . A Fresnel zone plate lens with a 12 nm
resolution is designed for soft X-ray microscopy'*'. The

There are
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multilayer Laue lens using diffraction from a multilayer
structure illuminated in transmission geometry can
provide a focal spot with a diameter of 16 nm at
19.4 keV™'. Refractive lenses can give a focal spot
down to 47 nm in diameter at 20. 7 keV*. X-ray
waveguides can be used to obtain a focal spot with size
of 40 nm X 25 nm"™ . A sub-15 nm beam can be confined
by two crossed X-ray waveguides™ . A precisely figured
total-reflection optics can provide a microbeam with size
of 25 nm at 15 keV"™'. An upstream deformable mirror
and a multilayer coated Kirkpatrick-Baez (KB) mirror
pair have been used to achieve 7 nm one-dimensional
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(1D) focusing at 20 keV'™*'. The focal spot size of the
monocapillary total-reflection X-ray optics is as small as
90 nm at 10 keV™. The resolution limit of X-ray
focusing optics attracts the concerns from their
designers and wusers. Suzuki'®' has discussed the
resolution limit of refractive lens and Fresnel lens in X-
ray region. Mimura et al.™’ have shown that the
laterally graded multilayer mirror has the potential to
exceed the Schwinger limit. Bergemann et al."" have
discussed the resolution limit of waveguide X-ray
optics, and they also have regarded the circular taper
monocapillary X-ray optics as the waveguide X-ray
optics. They found that the effective numerical aperture

of waveguides was limited by 4. = /25, the critical
angle of total external reflection 4, for a material with
refractive index n = 1 — § + i8, and believed that the
same limitations to focusing held for all X-ray optics.
However, Schroer et al.™ have calculated the
smallest spot size of adiabatically focusing refractive X-
ray lenses and indicated that these adiabatically focusing
lenses were shown to have a relatively large numerical
aperture, and could focus hard X-rays down to a lateral
size of 2 nm. such a size is well below the theoretical
resolution limit for focusing with waveguides by
Bergemann et al.'". Moreover, Evans-Lutterodt et
al .M have used the compound kinoform hard-X-ray
lenses to exceed the critical angle limit. There are also
discussions on some concrete types of total-reflection X-
ray optics. For example, Kirkpatrick et al.™' have
discussed the resolution limit of the KB mirror pairs. A
similar discussion of combined total-reflection mirror,
such as tandem-toroidal mirror™’, has been carried
out. As mentioned above, Bergemann et al.' have
discussed the resolution limit of taper monocapillary
total-reflection X-ray optics from the point of view of
the waveguideX-ray optics.

In this paper, we discuss the resolution limit of
total-reflection X-ray optics using the Heisenberg
uncertainty principle. The study does not focus on a
particular type of total-reflection X-ray optics, as it
applies to any total-reflection X-ray optics.

2 Resolution limit of total-reflection
X-ray optics

X-rays are part of the electromagnetic radiation
spectrum, and are therefore characterized by wave-
particle duality. We use the relationship of the position
and momentum of X-ray photon based on quantum
mechanics to evaluate the consequences of the critical
angle for total external reflection 6, on the resolution
limit of total-reflection X-ray optics. Let us suppose
that « and p are the position and momentum of photon,
respectively. The Heisenberg uncertainty principle can

be written as
AxANp, = h/2, @))

where i = h/(2m) is the reduced Planck constant.
As show in Fig. 1, for the X-ray beam with a
divergence 260, we have

(2)

AxAp, = Ax » psin § = %

S

i
dn
so that
A
. > s
ar = 47« sin 6

here A is the wavelength of X-rays.

(3

Fig.1 Scheme of X-ray beam with divergence 26

In total-reflection X-ray optics, X-rays are
reflected by many reflecting particles on the surface of
the optics, and then overlap at the focal plane. The
divergence of X-rays which undergoes total reflection
by a certain reflecting particle on the surface of the
optics isf.. Therefore, for the wave packet in the X-ray
beam reflected by a certain reflecting particle on the
surface of the optics, we have

Ar}*zs. 4

4 Sin%

This indicates that even if different X-rays, which are
reflected respectively by various reflecting points on the
surface of the optics, overlap precisely at the same focal
plane (focal spot), the minimum size of this focal spot
is not smaller than S. And therefore, S 1is the
resolution limit of total-reflection X-ray optics for the
X-rays with wavelength A.
The critical angle . can be written as

0. = /25 =2V (5)
Jr
where § is the imaginary part of the deviation of the
refractive index from unity, p is the electron number
density, and r, is the electron radius. Since the critical
angle 6. is of the order of a milli-radian, we let

sin(0,/2) = 0./2. (6)
With Egs. (5) and (6), we have the resolution limit
1

S= ——-——. (7)
2 mer o p
It can be obtained from Eq. (7) that the resolution
limit of total-reflection X-ray optics depends on the
material, and is independent of energy. For example,
for the nickel total-reflection X-ray optics,

0, = %mrad, (8)

12.4
A
Therefore, for the nickel total-reflection X-ray optics,

here £ =

is X-ray photon energy in keV.
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For the lead glass and borosilicate glass total-reflection
X-ray optics™ with 4. of 46/E and 30/E, the

corresponding S values are 4. 2 nm and 6. 6 nm,
respectively.

Table 1 shows the S values of total-reflection X-
ray optics made of different materials.

Table 1 S values of total-reflection X-ray optics made of different materials

Material C Be Al Pt Au W Ag Si Ge
Density /(g/cm®) 2.27 1.85 2.70 12.41 21.45 19.30 19.25 10.49 2.33 5.32
S /nm 6.6 7.3 6.0 2.8 2.1 2.2 2.2 3.0 6.5 4.3

To our knowledge. there are not currently any
theoretical and experimental results reaching our
conclusions of the resolution limit of the total-reflection
X-ray optics. For example, our result of S about glass
total-reflection X-ray optics is smaller than that obtained
from the point of view of the waveguide X-ray optics by
a factor of about 2. Taking such X-ray optics made of
SiO, as an example, our result is 6.9 nm, and the result
from the point of view of the waveguide X-ray optics is
13.4 nm when the incoming beam consists of only the

lowest mode* .

3 Conclusion

The resolution limit of total-reflection X-ray optics
could be obtained with the Heisenberg uncertainty
principle. For the total-reflection X-ray optics made of
nickel, lead glass and borosilicate glass, the resolution
limits are 3.2 nm, 4.2 nm and 6.6 nm, respectively.
The resolution limit of the total-reflection X-ray optics
depends on their materials.
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