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Abstract We investigate the phase coherence of bosons in a

double-well trap with a random energy mismatch that is used to mimic disorder in the presence of effective three-body

interaction. It is found that, in such a double-well disordered Bose-Hubbard model, the renormalized three-body

interaction can enhance the phase coherence of the bosonic system in the presence of disorder. The dependence of the

average phase coherence on the effective three-body interaction in the situation of strong disorder is also studied. To

our best knowledge, it is the first time that the effective three-body interaction is investigated in the context of

disordered quantum gases.
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1 Introduction

Since Anderson'’ predicted the effect of disorder

on non-interacting particles in 1958, quantum
localization has been intensively investigated in a
variety of physical systems™ Thanks to rapid

experimental development of producing, probing and
manipulating ultracold atoms with unprecedented
versatility and tunability, Anderson localization of the
matter wave has been observed in Bose-Einstein
condensates ( BECs) irradiated by laser speckles and
quasi-periodic optical lattices® *'. Moreover, more and
more theoretical and experimental efforts have been
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made to understand the interplay between disorder and
interaction in the weak-interacting and strong-
correlated quantum gases” 7.

On the other hand, with the ever-increasing
precision in recent experiments with ultracold
atoms''' ¥, it becomes possible to observe effects
beyond the standard Bose-Hubbard ( BH) model.
Conventionally, only binary interaction resulted from
the collision between two atoms in the lowest band has
been considered in a standard Bose-Hubbard model.
However, multi-band effect has been measured in
quantum phase revival spectroscopy™® ' and photon-
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assisted tunneling'™’. In these experiments, single- A U,, .,
h E = Ur —Z(N°/2 — N
band assumption should be checked carefully because where: : td + 2 N/ ) T

virtual transitions of the atoms between the ground and
excited bands have a non-trivial contribution to the
many-body system. In fact, the multi-band correction
can be renormalized into effective multi-body
interaction of the atoms in the ground band®* . To
our knowledge, many concerns have been given to
investigate the interplay between binary
interaction and disorder in the context of quantum
degenerated gas® *', however, multi-body interactions
have not been discussed by now.

In this work, we investigate the interplay between
disorder and density-dependent three-body interaction
in the framework of a simplified double-well model. We
provide a thorough analysis of phase coherence by
solving the two-site BH problem with random
disordered potential firstly presented by Zhou et
al .1,

atomic

2 Theoretical model

Following the routine of Zhou et al.™, we
consider the effective three-body interaction of bosons
in a randomly tilted double-well potential. The
Hamiltonian can be written as

H =— (b by + blb) + U,

2 En,-(n,-—l)Jr

i=L.R

%En;(n,-—l)(n, —2) 4+ S (g —n) s (D

6 S 2
where b] (b.) and by ( by)
(annihilation) operators in the left and right wells,
respectively, n, = bj b, (ng = byby) is the number
operator in the left (right) well, t is the tunneling
amplitude between the two wells, U, and U, are the
on-site two-body and effective three-body interaction
strengths. respectively. and ¢ is the energy mismatch
between the subwells. In our case, ¢ is randomly
distributed according to a certain probability function
P(e), thus simulating disorder. Here we focus on the
uniform disorder case P(¢) = 1/(2A)(— A< e < A),
where A characterizes the disorder strength. Other
distribution functions for ¢ do not change the qualitative
conclusion presented in this paper. The above equation
can be viewed as a two-site version of the extensively
studied BH model with random on-site energies.

To solve the problem, we start from the case of N
atoms in the double-well with a fixed e. We write the
Schrodinger equation H | ¥) = E | ¥) in the Fock space.
The basis states are defined by | I) =| N, ,Ny) =
| g*l,%+l>, Wherel:O,il,iZ,-",ig. For

simplicity, we assume N is a large even number.
Expanding | ¥) = leb, | ), we obtain the eigen
equation given by
(E—E) | D=—tM, ., |D—tM,,,|l—1),
(2)

are the creation

CIBN=2F + N/4—3N/2+2N], and M =

M, = N/2(N/2+1) —i(I+1). The eigen
energies and eigen functions can be easily calculated by
exact diagonalization. At OK, the phase coherence

1

between the subwells can be characterized as C., = ~N

N 1 ) .
(bl by, = NZ/MMH digi » where ¢ is the ground-

state wavefunction in the Fock space. (O) is the
expectation value of the operator O in the ground state,
and the subscript implies the fixed e. As mentioned
above, given a certain possibility on distribution of
disorder P(¢), the total effect can then be obtained by

averaging those results for each ¢ as follows:
A

0 = stP(s)<([)>E. (3)

In this work, following t?ne line of Ref.[18], we will
focus on the phase coherence of the bosons in such a
double-well in the presence of the effective three-body
interaction.

3 Numerical results and discussions

Now we investigate the effects of three-body
interaction on the phase coherence (C, and C) of bosons
in optical lattice, respectively. As is well known. in a
clean lattice, phase coherence is completely lost once
the lattice depth is large enough and all atoms are
isolated in the lattice sites, because the atom number in
each site is fixed. On the contrary, the atoms can
tunnel between neighbor sites in a shallow lattice and

the phase coherence is restored and the superfluid phase
[19]

appears The phase transition from a superfluid
condensate to a Mott insulator is intrinsically
interaction-induced  localization, because  mutual

interaction between atoms predominates the tunneling
and results in the localization of the atoms in each site
and the phase coherence information are erased.
Different from Mott insulator, Anderson localization is
related to strong disorder experienced by the atoms
even in the absence of interaction®!. As U, ## 0 (U, =
0), the phase coherence C. does not monotonously
decrease as ¢ increases, while it has oscillating
characteristics, which is induced by the discretization of
E,. The oscillating behavior of C. becomes more
obvious as U, increases remarkably. So in the presence
of interaction, weak disorder could strengthen the
phase coherence in a bosonic system"* .

First we calculate the phase coherence for a fixed
mismatch ¢ in the absence and presence of the effective
three-body interaction, as shown in Fig.1l. For
simplicity, binary interaction strengthU,/(zN) =1 and
the total atom number N = 100 are chosen to illustrate
the physics. The curve of the case U, = 0 reproduces
the key result in Ref. [ 18], which shows a non-
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monotonic decrease of the phase coherence in an
interacting quantum gas. Furthermore, in the presence
of the effective three-body interaction, we find several
interesting phenomena that may reflect some
complicated physics. Similar to the case of U; =0, one
can be also observed a remarkable oscillation of C.,
however, the oscillation period grows as U, increases.
As we know., local maxima of the curve emerge at

certain values of e, where E; = E, —1 is satisfied ™',
and we find the local maxima ¢* = [U, + %(N —

2)1(1—21"). It is obvious that the distance between
two neighbor local maxima will increase when U,
becomes larger. Unexpectedly, the trend of slow
decrease of C. as ¢ increases is not satisfied in the
situation of strong three-body interaction strength.
When U, is large (e. g., U; = 0. 1), the phase
coherence does not have the descending tendency with
oscillating characteristics. However, in the absence of
three-body interaction, the phase coherence will decline
with oscillating behavior. So three-body interaction can
maintain the phase coherence and superfluid state of the
system, and prevent the phase transition to Mott
insulator.

0.5
— U0
04 ~ U,=0.01
U=0.1

Fig.1 C. as a function of ¢/¢N for different three-body
interaction strengths U; of 0 (solid), 0. 01
(dashed), and 0. 1(dotted). U,/(tN) is set to 1
for all curves. The total atom number is N =100.

Now we turn to the average phase coherence C =
N
JdeP(e)Ce and depict the influence of the three-body

—A

interaction on C (shown in Fig. 2). As shown by the
solid curve in Fig. 2, C drops down monotonously as
04

—A-=1
------- A=10
v A=50

0 0.1 0.2 0.3 0.4 0.5

Fig.2 Average phase coherence C as a function of Us/ U,
at different disorder strengths. U,/(tN) =1 is
fixed.

U,/ U, increases for a weak disorder potential (i.e.,
small A). Here both of binary and three-body
interactions contribute to the trend of localization in the
strong interaction limit because they favor the on-site
interaction and are unfavorable to the hopping of the
atoms between neighbor sites. As the strength of
disorder increases, such monotonicity of the curve is
not obvious. As shown by the two curves of A = 10 and
A = 50 in Fig. 2, although the declining tendency of C
still appears, however, twists and turns emerge
remarkably in the curves. In addition. in the limit of
large U, and with a strong disorder (for example A =
50), C tends to a larger value than that in the case of
weak disorder. Particularly, when three-body
interaction and disorder strength are both significant, C
does not disappear completely, which means that the
atoms have not been completely isolated and the
localization is absent. This finding strongly supports the
“two negatives make a positive” effect predicted in
Ref. [18 ], while three-body interaction and disorder
coexist, the system cannot run to the entire
localization.

Furthermore, in order to analyze the influence of
disorder on the coherence in the presence of the
effective three-body interaction, we calculate C as a
function of the disorder strength A as shown in Fig. 3.
Apparently, when three-body interaction does not
exist, C decreases monotonously with increasing
disorder strength A/¢N . and the localization of particles
is enhanced. As U, increases, C performs some
oscillating behavior and the resonance feature of the
curves becomes significant, C even does not tend to
localization when the disorder is strong enough. And
this result directly reveals “two negatives make a
positive” effect described in Fig. 2. We also note that
the larger U, is, the more minimum phase coherence of
C the system can maintain. even though C could not go
to zero. It is also quite clear that C first increases when
the disorder strength A grows from zero (A < 10), and
then the peaks of C become wiggles on the top of the
slowly decaying curves. This fact shows the significant
difference of the disorder effect between the presence
and absence of three-body interaction. In the presence
of three-body interaction, the disorder effect is non-

monotonic.
0.4 =0
—-U=0.05
ST 1 |
015"
0 20 40 60 80 100

AtN

Fig. 3 C as a function of A/tN for different disorder
strengths of the effective three-body interaction.
U,/(tN) = 1 is also fixed.
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At last, we turn around to review the influence on
phase coherence by two-body interaction characterized
by the strength U,. Zhou et al.™ have pointed out
that in a disordered double-well, with increasing U, , C
firstly increases monotonously and then decreases, and
this phenomenon is totally different from that in a clear
system. We calculate C as a function of U, for U, =0,
0.05, 0.1, respectively, where the disorder strength A
is fixed to 20, and the corresponding calculation results
are shown in Fig.4. From the curves in Fig.4, we find
immediately that when the three-body interaction
exists, with increasing U,/tN, the monotonic
increasing tendency of C cannot be found, instead of
decreasing. It directly reveals that the three-body
interaction destroys the phase coherence of the system,
i.e., in some extent, high order interactions can result
in localization. Furthermore, we also note that in the
presence of significant strength of two-body
interaction, although the strength of three-body
interaction is different, the average phase coherence C
still tends to a universal value close to 0.1. In general,
the effective many-body interactions are much weaker
than the binary one in this situation, and the
competition between interaction and disorder is resolved
primarily by two-body interaction.

0.4
—U,=0
- U,=0.05
0.3+
s [=0.10

100.2

0.1

U, /tN

Fig. 4 C as a function of U, for different three-body
interaction strengths. The disorder strength A is
fixed to 20.

4 Conclusion

In conclusion, we have studied the coherent
property of a disordered quantum gas in a double-well
when the binary and effective three-body interactions
are present. We find that the multi-orbital energy plays
an essential role on the average phase coherence of the
system. We expect this work will be helpful to
understand more intricate phenomena in the context of
interacting disordered quantum gases.
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