水体深度对激光声信号影响研究

王晓宇 王江安 宗思光 刘 涛 李胜勇

(海军工程大学电子工程学院,湖北 武汉 430033)

摘要 分析了激光声信号的理论模型。建立了研究不同水深条件下激光声特性的实验平台。研究结果表明:当水体深度在 0~100 m 范围内逐渐增加时,激光声信号的两个相邻主峰时间间距越来越小;激光等离子体声波的峰值 声压逐渐减小;空泡首次溃灭声波的峰值声压在 0~20 m 范围内逐渐增加,在 20~100 m 范围内逐渐减小;空泡溃 灭声波峰值个数减少。

关键词 激光光学;空化噪声;光致击穿;激光声

中图分类号 TN249 文献标识码 A doi: 10.3788/CJL201340.1102002

Research on Laser-Induced Acoustic Signals in Different Water Depths

Wang Xiaoyu Wang Jiang'an Zong Siguang Liu Tao Li Shengyong

(Department of Electronic Engineering, Naval University of Engineering, Wuhan, Hubei 430033, China)

Abstract The theoretical model of laser-induced acoustic signals is analyzed. The experimental platform is built to research characteristic of laser-induced acoustic signals. With the increase of water depth in $0 \sim 100$ m, the time interval of adjacent peak pressures of laser-induced acoustic signals decreases. Peak pressures of acoustic signals induced by laser-plasma decreases. Peak pressures of acoustic signals induced by bubble collapse first increase in $0 \sim 20$ m, then decrease in $20 \sim 100$ m. Number of acoustic signals induced by bubble collapse decreases. Key words laser optics; cavitation noise; laser-induced optical breakdown; laser-induced acoustic signals

OCIS codes 140.3440; 140.3530; 140.3540

1 引

言

激光与液体相互作用时,如果激光的功率密度 超过了液体的击穿阈值,就会产生液体介质的光击 穿现象,在击穿区域产生空泡,并且辐射声波,称为 激光声信号^[1]。光击穿机制下产生的激光声信号在 1 m距离上声压级可以达到 10 kPa^[2],在海洋应用 中具有一定的发展潜力。

近年来,广大学者对激光击穿水介质辐射声信 号和空化现象开展了广泛的研究。在国外, Antonelli等^[3]提出了激光声频谱控制技术;Vogel 等^[4-5]对激光击穿水介质过程中的能量分布以及激 光空泡在弹性边界面附近的运动情况进行了实验研究。在国内,宗思光等^[6-7]利用激光声进行了水下 探测实验,通过高速摄像技术拍摄了激光空泡在刚 性壁面附近的运动过程;彭水等^[8]提出了多个激光 声源的声场叠加计算方法;李胜勇等^[9]使用小波方 法对激光声的频域特征进行了分析;刘涛等^[10]利用 激光空泡研究了空蚀效应。总体看来,对激光声特 性、应用以及理论计算的研究很多,但对实际应用环 境下的激光声研究很少。在通过激光声技术实现水 下通信或探测时,其应用范围不仅仅局限在水面附 近,在几十米甚至上百米的水深下都是有可能的。

收稿日期: 2013-04-03; 收到修改稿日期: 2013-05-22

基金项目:国家自然科学基金(51109217,51209210)和装备预研基金(51400010105JB1101)

作者简介:王晓宇(1987—),男,博士研究生,主要从事激光声方面的研究。E-mail: xiaoyu198725@sina.ocm 导师简介:王江安(1951—),男,教授,博士生导师,主要从事激光应用方面的研究。E-mail: gdyfzx@163.com 本文电子版彩色效果请详见中国光学期刊网 www.opticsjournal.net

因此,有必要开展对不同水深条件下激光声信号特性的研究。

本文构建相关实验平台,模拟不同水体深度下 的环境特征,对不同水体深度下产生的激光声信号 进行了分析。研究结果对开展激光声的实际应用有 一定的参考价值。

2 理论分析

激光声信号包含两种声波,即激光等离子体声 波和空泡溃灭声波,前者是由于激光等离子体的膨 胀产生的,后者是由于空泡的溃灭产生的。

根据激光等离子体声源的特点,可以用球源的 波动方程对激光等离子体声波进行描述。球源的波 动方程可以写作^[11]

$$\frac{\partial^2 p}{\partial t^2} = c^2 \left[\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial p}{\partial r} \right) \right], \tag{1}$$

式中 p 为声压,t 为时间,c 为液体中声速,r 为场点至 球心的距离。在自由空间中(1)式的通解可以表示为

$$p(r,t) = \frac{A_0}{r} f(r-ct) \exp[j(\omega t - kr)], \quad (2)$$

式中 A_0 为声压的幅度,f为任意函数,k为波数, ω 为频率。

假定 t=0 时,等离子体开始膨胀,激光作用停止后,腔体迅速冷却,介质通过快速弛豫过程恢复到 平衡状态,于是有

$$\Delta V = \Delta V_0 \exp\left(-\frac{t}{\sigma}\right),\tag{3}$$

式中 ΔV 为 t 时刻等离子体的体积增量, ΔV_0 为 t = 0 时的体积增量, σ 为信号的衰减常数,指声压幅度 衰减为 1/e 所需的时间。

等离子体膨胀产生的声波传播到 r 处所需时间 为 r/c,通过这些初始条件可以解得

$$f(r-ct) = \exp\left(-\frac{t-r/c}{\sigma}\right). \tag{4}$$

将(4)式代入(2)式可以得到距离等离子体 r 处的声压表达式为

$$p(r,t) = \frac{A_0}{r} \exp\left(-\frac{t-r/c}{\sigma}\right) \exp\left[j(\omega t - kr)\right].$$
(5)

对于空泡溃灭声波,可以用 Lighthill 方程结合 空泡的脉动方程进行描述。Lighthill 方程可以写 作^[12]

$$\nabla^2 p - \frac{1}{c_0^2} \ddot{p} = -\dot{q} + \nabla f - \frac{\partial^2 \tau_{ij}}{\partial x_i \partial y_j}, \qquad (6)$$

式中 q 为液体单位体积内质量的脉动速率, \dot{q} 为q 对时间的一阶微分导数, \ddot{p} 为 p 对时间的二阶微分导数,f 为作用在单位体积流体上的脉动外力, τ_{ij} 为流体应力张量, x_i , y_i 为坐标基矢量。当空泡形成以后, 声源仅与流体的质量脉动有关。(6)式可简化为

$$\nabla^2 p - \frac{1}{c_0^2} \ddot{p} = -q. \tag{7}$$

式中 c₀ 表示液体中的声速。由于空泡尺寸远 小于空泡辐射声波的波长,故(7)式的解可表示为

$$p(l,t) = \frac{\dot{Q}(t)}{4\pi l},\tag{8}$$

式中Q表示质量变化速率,表示为

$$Q = \int_{v} q \, \mathrm{d}V = \frac{\mathrm{d}}{\mathrm{d}t}(\rho V) \,, \tag{9}$$

ρ 为液体密度, l 为液体介质中的任意一点到空泡中 心的距离, V 为任意时刻空泡的体积。液体介质密度 的起伏可忽略不计, 即 $\rho \equiv \rho_0$, ρ_0 为初始时刻液体的 密度。所以

$$p(l,t) = \frac{\rho_0 \ddot{V}}{4\pi l} = \frac{\rho_0 r_{\rm b} (r_{\rm b} \dot{r}_{\rm b} + 2\dot{r}_{\rm b}^2)}{l}, \quad (10)$$

式中 r_b 为空泡在时刻 t 的半径,r_b 和 r_b 分别为空泡 半径对时间的一、二阶导数。

在考虑含气量、液体粘性及表面张力等因素时, 设流体不可压缩,单空泡的运动方程为^[13]

$$\frac{p_{\rm v} - p_{\rm o}}{\rho} + \frac{\rho_{\rm g}^{0}}{\rho} \left(\frac{r_{\rm b0}}{r_{\rm b}}\right)^{3k} = r_{\rm b} \dot{r}_{\rm b} + \frac{3}{2} (\dot{r}_{\rm b})^{2} + \frac{4\mu \dot{r}_{\rm b}}{r_{\rm b}} + \frac{2S}{\rho r_{\rm b}}, \qquad (11)$$

式中 ρ_{g}^{0} 为空泡内气体分压初始值, r_{bo} 为空泡的初始 半径, r_{b} 为空泡半径,S为液体表面张力系数, μ 为液 体的粘滞系数, p_{v} 为气泡内蒸汽压, p_{∞} 为环境压 强,k为气体的绝热系数。

根据(11)式可以求出空泡半径随时间的变化, 代回(10)式即可求得空泡溃灭时辐射的声信号。通 过四阶 Runge-Kutta 法对(10)式和(11)式进行数值 计算,采用 20 °C 清水的参数值: ρ =998 kg/m³, k=4/3, ρ_{g}^{0} =0.05 MPa, S=0.073 N·m⁻¹, μ = 1.002×10⁻³ kg·m⁻¹·s⁻¹, $p_{v}-p_{\infty}\approx$ -0.1 MPa, r_{b0} 分别取 2.0、2.5、3.0 mm。得到的空泡脉动和辐 射声压仿真结果如图 1 所示。可以看出,空泡在每 次溃灭阶段辐射声信号的强度最大。在其他参数不 变的情况下,随着空泡最大半径的增加,空泡溃灭阶 段辐射声信号的峰值声压逐渐变大。

300 mJ,波长为1064 nm,脉冲宽度为8 ns。激光经过

扩束聚焦系统后,在高压水箱内部将水介质击穿,产

生的激光声信号由水听器进行接收,接收到的声信号

通过电缆送入 Agilent7104A 型示波器进行采集。击

air

water

high pressure water

tank

图 3 实验系统结构图

Fig. 3 Structural drawing of experimental system

20 m深处环境,测量得到的激光声信号如图 4 所

示。图中第一个峰是激光等离子体声波,后面几个 峰是空泡每次溃灭时辐射的声波。可以看出,随着 水体深度的增加,产生的激光声信号也发生了明显

的变化:1)相邻两个峰之间的时间间隔变小;2)峰

通过改变水下内部压强,模拟水面处和水下

hydrophone

air

pump

camera

穿过程由 FASTCAM 1.1 型高速摄像机进行记录。

1

oscillograph

lasei

实验结果分析

3 实验设计

随着水体深度的增加,水体的温度、盐度和压强 等特征参数都会产生相应的变化。其中,温度、盐度 变化较缓慢,而压强的变化很显著,在近水面压强可 以近似为一个标准大气压(0.1 MPa),每当水深增 加10 m,水体压强就增加0.1 MPa。因此,本实验 忽略了水体盐度、温度随水深的变化,通过对水体压 强的控制实现对深海环境的模拟。

实验采用专门制作的高压水箱,其结构如图 2 所示。实验平台框图如图 3 所示。高压水箱内部装 有蒸馏水,通过充气泵对水箱内的压强进行控制。 使用调Q Nd:YAG脉冲激光器,输出激光能量为

图 2 高压水箱结构图

Fig. 2 Structural drawing of high pressure water tank

4

图 4 不同水深位置处激光声信号图。(a)水面;(b)水下 20 m

Fig. 4 Laser-induced acoustic signals in different depths. (a) Surface; (b) 20 m underwater

少。图 5 统计了不同水体深度下激光等离子体声波 和空泡首次溃灭声波之间的时间间隔。图 6 统计了 不同水体深度下激光等离子体声波和空泡首次溃灭 声波的峰值声压。

图 5 不同水深处间隔变化

Fig. 5 Time intervals in different water depths

图 6 不同水深处信号峰值幅度变化

Fig. 6 Peak pressures in different water depths 激光声信号第一个峰,即激光等离子体声波,其 产生时刻可以近似为空泡首次脉动的开始时刻。第 二个峰是在空泡首次溃灭时产生的。所以第一、二 个峰的时间间隔可以近似为空泡的首次脉动周期。 第三个峰是在空泡第二次溃灭时产生的,因此激光 声信号第二、三个峰的时间间隔可以当做空泡的第 二次脉动周期。激光声信号相邻两个峰之间时间间 隔的减小,说明空泡脉动周期变短。由于空泡在每 个脉动周期内都辐射声信号,空泡溃灭声波峰值数 目的减少,说明空泡的脉动次数减少了。上述由激 光声信号特性得出的空泡脉动情况,可以通过高速 摄像机拍摄的图 7 得到证明。序列中相邻图片的时 间间隔是10 µs。可以看出在靠近水面时,空泡进行 了两次脉动。首次脉动周期大约为 180 μs,第二次 脉动周期大约为 90 µs。当水体深度为 20 m 时,空 泡只进行了一次脉动,脉动周期大约为70 µs。

对于水体深度变化引起的激光声信号峰值声压 的变化,由于实验条件的限制,这里仅仅对可能的原 因给出理论分析。

图 7 不同水深位置处空泡脉动图。 (a)水面;(b)水下 20 m

Fig. 7 Movements of laser-induced bubbles in different depths. (a) Surface; (b) 20 m underwater

激光等离子体声波峰值声压逐步减小,主要是由 于随着环境压强的增加,水体被压缩,水分子之间的 距离变小造成的。水分子之间距离的减小,会使激光 在水中传输同样距离时,能量损失变大,传播到击穿 点的激光能量减小,等离子体吸收的能量减小,造成 了激光等离子体声波的能量减少,进而峰值声压降 低。水分子之间距离的减小还会造成声波传输过程 中的衰减速度变快,这样声波从击穿点传播到测量点 的能量损耗变大,接收到的声信号峰值声压减小。

对于空泡首次溃灭声波,根据(10)式可知,在液 体密度和声波传输距离一定时,其幅值取决于空泡 体积对时间进行二次微分的最大值,记为 Ÿ_{max}。 Ü_{max}的变化主要取决于环境压强和空泡最大半径, 而空泡最大半径则是由激光能量和环境压强共同决 定的,激光能量的增加和环境压强的减小都可以使 空泡最大半径变大。由于实验时激光能量是保持稳 定的,因此该条件下空泡最大半径只取决于环境压 强,所以可以认为实验中 Ümax 的变化是由环境压强 决定的。环境压强的增加对 Vmax 同时起到两种作 用,首先环境压强的增加引起空泡内外压强差变大, 空泡半径的运动状态变化快,这样使得 \ddot{V}_{max} 变大。 但是另一方面,环境压强的增加使得空泡膨胀运动 受到限制,空泡膨胀能够达到的最大半径减小,根据 对(10)、(11)式的仿真结果可知,空泡最大半径减小 时,其溃灭阶段辐射声信号的峰值声压即 Vmax 也会 减小。在水体深度在 0~20 m 范围内逐渐变大时, 空泡内外压强差的增加对 Vmax 的影响更大,这样 ∇_{max}变大,即空泡溃灭声波峰值声压变大。当水体 深度在 20~100 m内继续变大时,空泡最大半径的 减小对 ∇_{max}的影响更大,使得 ∇_{max}减小,即空泡溃灭 声波峰值声压减小。

5 结 论

通过构建实验平台,模拟了不同水体深度下的 环境特征,研究了不同水深条件下的激光声信号特征,研究得出的结论如下:

 1)随着水体深度的增加,激光声信号相邻峰值 之间的时间间隔逐渐减小。

 2)随着水体深度的增加,激光等离子体声波的 峰值声压逐渐降低。

3)水体深度的增加使得空泡溃灭辐射声波峰 值个数减少。当水体深度在 0~20 m 范围内逐渐 增加时,空泡首次溃灭声波峰值声压逐渐增加。当 水体深度处于 20~100 m 范围内逐渐增加时,空泡 首次溃灭声波峰值声压逐渐减小。

研究结果可为激光声的实际应用提供一定的参考。今后将争取建立更加先进的实验系统,对更大 深度范围内的激光声信号展开研究,并对激光声信 号峰值变化的原因进行实验验证。

参考文献

1 Li Rongfu, Cui Guihua, Tian Zuoxi, *et al.*. Laser-Acoustic Remote Sensing Technique [M]. Beijing: National Defence Industry Press, 2003. 12-15.

李荣福,崔桂华,田作喜,等.激光声遥感技术[M].北京:国防 工业出版社,2003.12-15.

2 Zong Siguang, Wang Jiang'an. An opto-acoustic method for communication between aerial and underwater platforms [J]. Electronics Optics and Control, 2009, 16(10): 75-79.

宗思光,王江安. 空中对水下平台激光声通信技术的探讨[J].

电光与控制,2009,16(10):75-79.

- 3 L Antonelli, F Blackmon. Experiment demonstration of multiple pulse nonlinear optoacoustic signal generation and control[J]. Applied Optics, 2005, 44(1): 103-112.
- 4 A Vogel, J Noack, K Nahen, *et al.*. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales[J]. Appl Phys B, 1999, 68(2): 271-280.
- 5 A Vogel. Dynamics of laser-induced cavitation bubbles near an elastic boundary[J]. Fluid Mech, 2001, 433(1): 251-281.
- 6 Zong Siguang, Wang Jiang'an, Ma Mingkui, et al.. Investigation of laser-induced acoustics signal for target detection[J]. Chinese J Lasers, 2010, 37(5): 1332-1337. 宗思光, 王江安, 马明奎,等. 水下目标探测的激光声特性[J]. 中国激光, 2010, 37(5): 1332-1337.
- 7 Zong Siguang, Wang Jiangan. Study of laser bubble erosion in the vicinity of a solid boundary[J]. Acta Optica Sinica, 2009, 29 (8): 2197-2201.
 宗思光,王江安.光击穿液体空泡特性的高速图像测量[J].光

学学报,2009,29(8):2197-2201.

- 8 Peng Shui, Zhang Mingmin, Wang Jiang'an. Improved method for computing underwater acoustic wave induced by laser breakdown[J]. Chinese J Lasers, 2012, 39(4): 0402003.
 彭 水,张明敏, 王江安. 一种改进的水下光击穿声辐射计算方 法[J]. 中国激光, 2012, 39(4): 0402003.
- 9 Li Shengyong, Wu Jun, Jiang Tao, et al.. Properties investigated of laser-induced cavitation bubble collapse sound waves based on wavelet analysis[J]. Laser & Infrared, 2010, 40 (10): 1053-1058.
 李耿甬 早 做 羊 法 筆 其王小波公析的公询声波转批研

李胜勇,吴 俊,姜 涛,等.基于小波分析的空泡声波特性研 究[J].激光与红外,2010,40(10):1053-1058.

10 Liu Tao, Wang Jiang'an, Zong Siguang. Experimental study of cavitation erosion by laser-generated bubble near a rigid boundary [J]. High Power Laser and Particle Beams, 2011, 23(2): 298-302.
刘 涛,王江安,宗思光.激光空泡在刚性壁面附近空蚀特性的

11 Xu Xiaomei. Fundamentals of Acoustics[M]. Beijing: Science Press, 1998. 102-105.

许肖梅. 声学基础[M]. 北京:科学出版社, 1998. 102-105.

- 12 M J Lighthill. On sound generated aerodynamically [J]. Proceedings of the Royal Society of London, 1952, 211(1107): 564-587.
- 13 C Brennen. Cavitation and Bubble Dynamics [M]. New York: Oxford University Press, 1995. 80.

栏目编辑: 宋梅梅