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Abstract An amplitude of internal solitary wave as high as 100 m has been reported in the South China Sea(SCS).

Large-amplitude internal waves may cause severe damage to the ocean engineering and submarine. The fully-nonlin-

ear Schrodinger equation (FNLS) that describes large-amplitude internal-wave propagation in deep sea is derived from

the governing equations of hydrodynamics by introducing the perturbation expansions with the assumption that the

fluid is in a two-layer stratification system. This is a theoretical model for internal-wave dynamics, which is different

from the well-known KdV series formula and BO equation. Moreover. a numerical simulation is carried out in the

SCS. The results show that waveform and group velocity in evolution are in accordance with the MODIS images, so

the model is suitable for simulating the large-amplitude internal-wave behavior in deep sea.
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1 Introduction

Internal waves are a kind of nonlinear wave mo-
tions in stratified fluids. Generally, they are generated
by the tidal currents that encounter rough topography
on the bottom of the ocean. The amplitude of internal
waves ranges from less than 20 m to over 100 m. The
large-amplitude internal waves, frequently generated in
deep sea, can bring the transport of mass and momen-
tum in a great level. At the same time, the global ocean
circulation mainly occurs in deep water that is away
from the continental shelf. So internal waves play im-
portant roles in maintaining the ocean circulation and
global climate. In addition, the large-amplitude deep-
sea internal waves are closely related to human activi-
ties such as marine engineering, shipping and military
operations. The sea water will have strong inertia and
stress force induced by the tremendous energy of inter-
nal waves in deep sea, which could cause adverse
effects on the activities above.

The moderate-resolution imaging spectroradiome-
ter (MODIS) sensor collects data in a continuous, sys-
tematic manner at 250-m resolution on a 2250-km
swath™. It has almost worldwide coverage and could
optically detect internal waves by the sunglint scatter-
ing. Because the sunglint scattering is greatly related to
sea surface roughness, the surface convergence/diver-
gence caused by internal waves may present dark/light
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bands in the MODIS images™'. Based on this signature
and high enough resolution, the MODIS is essential for
internal wave optical detections and parametric inver-
sion.

Many researchers intend to investigate the internal
wave by establishing the theoretical model and carrying
out numerical simulation for the wave propagation. As
early as 1895, Korteweg and G. de Vries derived the
KdV equation, which was a mathematical model of shal-
low-water waves with weakly nonlinear restoring
forces. Until now, lots of studies on internal waves are
based on this model™® . Furthermore., Grimshaw ' et al
simulated the fully nonlinear internal wave propagation
in shallow water by employing the EKdV equation. Ben-
jamin and Ono™ obtained the BO equation for describing
internal waves in deep sea with a two-layer model ap-
proximation, and it requires wavelength be much larger
than upper layer depth. Then, using mapping method,
Peng et al®’ have obtained two kinds of soliton solutions
to the nonlinear Schrodinger (NLS) equation. Chang et
al”! present a time-independent approach to compute
the wave functions of NLS. More recently, our group
proposed the weakly NLS in 2010’ , which was applica-
ble to deep-sea internal waves with small amplitude
compared to upper layer depth.

Our research is focused on the deep-sea internal
waves with large amplitude. As a result, new theoreti-
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cal model needs to be constructed for demonstrating the
internal wave behavior in systems with two layers. Be-
sides, the bright/dark bands in optical MODIS images,
which are generated by internal waves, will contribute
to validate the result of numerous simulation.

2 Model description

In this paper, two-layer assumption is used: the
upper layer with the density p, ., pressure p; and
thickness h,, the lower layer with the corresponding
o2 P2 h, (Fig.1). The continuity equation and Ber-

noulli equation in the upper layer is
¢ to. =0, <z<h (D
@ -0—%(# + ¢ + gt :*&,
01
where ¢ is the speed scalar potential, g is gravity accel-
eration and ¢ is the displacement of interfacial pycno-
cline. From the upper rigid assumption, the kinematic

z= (2)

boundary conditions are given by

0. =0. z=n (3)
The boundary conditions at the interface are the conti-
nuity of normal velocity and pressure:

C« +S01Cz = @: z = g 4
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Fig.1. Internal wave in two-layer configuration

b4 b
Two dimensionless parameters are introduced” .
A
€ — h,710 ) "= khl .

Here A, is maximum amplitude, and k is the wave
number. Both e and y are considered as small parame-
ters. More specifically, they require:

Oe) =0, p<l1.
Equation of weakly nonlinearity is based on O(e) =
O(0). That is the key difference. The dimensionless
forms of (1) ~(4) are

Lo to. =0, <<z2<1 (6)
/‘Q(SDrJrg)JV%(#ZSDiJFSDf):*,uzpu z=¢ (1)
e =0, ==1¢ (8

y2(§,+go,,§,):go:, z=1 9
Let ¢ | = ¢,. Substituting the Taylor expansions of ¢
and ¢, at z = 1 into (7) and (9), it is obtained that

(=1 (= p) == ELE— D +LE— D' + T ¢

(10)
(10) is dimensionalized as
RS S R
<h1 1) o <é+h,)§+
Eziiizig ; 8
(2@ o h1>§2+hfc'(n)

In the lower layer, the primitive governing equa-
tions become

0o to. =0, —h <z2<¢ (12)
501"‘%(90%4—@2:) :*g§*ifz, z=1¢ (13
Ctel.=¢.. 2=¢ (14)
¢ =0. z=—h, (15)

Substituting (11) into (13) yields

|:g0,+%(gai+gof)]|:<h£—l> ]:*Cl + el +al .
1

(16)
where ¢,, ¢, and ¢, are listed as follows:

(P1 _Pz)g}h +,01C§ .

o = _(016‘3 + 4o, — p1) gh, )

_ (81 _Ez)g

o =—

chl ’

’ 3

20, hi N 02 I

Differentiating (16) over t, «, z, three equations could be get. Combine them to one and seek series expansion of

it in powers of fat z=0:

[gou +¢“1§+%¢m§2 F(EH )+ (¢ +¢i>m§+%¢, (& +¢). +%¢:<¢i +¢i>:}x

[0 Je oo mt b T2

) tet |-

—ae. —ael— %c‘] SD:::é,z +208. 20,808+ 3¢ f@ 17)

Similarly, the series expansion of (16) is:

—at=[atattgelty Gty |[(F-1) Far—er.  a®

Now introduce two variables by the method of mul-
tiple scale: the spatial scales x, =

and the temporal scalest, = ¢, t, = ot t, = 6’ t, where

o is a small parameter.

2
Xe Xy — 0L s Xy — 0 X

By the virtue of perturbation expansions, ¢ and §
are shown as:

o= D d'p.s = D,0"C. n=0,1,2,3,
n=1 1
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Assume that the wave is evolving slowly, so ¢, is ex-
panded further by

m=0
0. = 290 exp(img) + c. c.
Here m n%eans the order of harmonic, and c.c. is the
complex conjugate. Combining these expansions with
(12), (15), (17) and (18), we compare the coeffi-
cients of the same exponent of e and get

m=0,1,2,3,-

92

<azz—m2/€2>%, =F,, —h <z<{ (19
d 2 <
<cl Fy m* o’ )g@ =G, z=¢ 20)
C,,,“ - LH,,,,, i} PARSS g (21)
€
(). =0. z=—h (22)

By the solutions of above four equations and the use of
recurrence relation about putting the results of last or-
der (n = j) into the next order (n = j + 1 ), the
Schrodinger equation can form its basic expressions.

When 1 = 1. let &, = L[ Aexp(ig) +c.c. ], (19)~
(22) will have the solution (23)~(25):

o= @ — Wch[f’(z+h ,) J[1Aexp(ig) +c.c. ],

(23)
= %[Aexp(igo) feeds 24)
W = ¢ kth(kh,). (25)

_do o _2kh;
“T A 2k[1+sh(2kh2)}' 26
When n =2, equation (27) ~(30) are obtained by

solving (19) ~(22) for second order:

1 2
Coo =— 7901(»‘ + £ ‘A‘“’ 27
1
A, Fc A, =0, (28)
0 = fich[2k(z+hy) JIA®, 29)
§22 - f‘zAz . (30)
When n =3, let&é= x, —c,t, . seeking the solution
of (19)~(22) yields (31)~(33):
$s0 — %5@1«)5 r, (* + 2hy2) s 3D
oo =15 | A" +5(0), (32)
_ w (s N N _
o = Tk i) {z(z+2h)ch [k(z+ D) JiA, .
2(z+h))sh [ k(z+h,) JA, }, (33)
In (32), s(¢) indicates a integration constant.
Substituting (32) into (20) gives
. . wh, . i . w'hy
id, T A, + [Zkth(khz) 20 ok ‘*’}Aé *
(Ldee Lo g Y jalra+9a = o. (30
&) C
where y also means the integration constant.
We define
a — by (38

—_— e g
2ktan h(kh,) - 2a)+ lk

f(f%cg,+f +k}(%’

The ¢ 1, and A, which are independent of z, are the g= (36)
functions in variables x; , xzf tis tys respectively.‘ the coefficients f, ~ f, are hsted as follows.:
From (25), the expression for ¢, (group velocity)
is found to be
X 1w clkz
fo - + ZCl |:1+t
. Jaw Ak [2+ch (khg)]iczwiwi2 L g '
hH = { I, + S h CHIL) 2 1 } [2¢,ksh (2kh,) — 4w’ ch (2kh,) ]
(2w ok o o
/= {lech(Zkh )+[2h1 Rt r T 4(1}},
- _ i fu o’ [ 1 } &
; = = |1t =
/s & —ch, /i 4 +th“(k112) 2
W hth (B o kh, qwl, oh kh, qw
S5 = 4 4k[1+th(/eh )}Lzm[l ¢ +th(kll,2)}+2th(khz)
c'zw[ kh, J '’ h,
2k th Ckh,) 2c,k
¥ @ e ok e w
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. aw | ) _c’fkv - b | 20 . ,
= (F224+ 2 40— 95 ) (f = ot (<5 B k) o o+
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Leté = x, — c,t,» 1, = . in the new variables,
(36) reads
—iA, + A FBlA|"A+7A = 0. (37)
(37) is the deep-sea internal wave fully-nonlinear dif-
ferential equation (FNLS). A stands for the amplitude,
and o, 8 are defined as the dispersion coefficient and
nonlinear coefficient, respectively. yis the shoaling co-
efficient that depends on the gradient of bottom topog-
raphy variation.

3 Numerical simulation for the FNLS
The equation derived in this paper is applicable to
large-amplitude internal-waves propagation in deep sea.
The aim of this section is to construct a numerical simu-
lation for large-amplitude internal-wave propagation in
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Fig.2.

actual SCS bathymetry conditions. After presenting the
simulation results, the correctness of the model can be
validated.

Large-amplitude internal waves are frequently ob-
served primarily in the northern South China Sea (SCS)
from Luzon Strait, and travel northwest to the conti-
nental shelf over the deep basin with the depth up to
3000 m. Our numerical simulation is based on the inter-
nal waves in the white rectangle region in Fig. 2 (a).
From the situ observation data in this area, the density
is almost unchanged at the same depth. So we set the
density of upper layer and lower layer as p , =
1022.6kg/m® and p, = 1025.5 kg/m®. The gravity ac-
celeration is ¢ =9.8 m/s”, and the depth of upper layer
is h; =110 m.

115°E 117°E 18E
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Two MODIS images on SCS. (a) MODIS image acquired at 03:00 GMT on 5 July 2011; (b) MODIS

image acquired at 05:20 GMT on 21 April 2007.

3.1 Simulation of internal-wave propagation
The numerical simulations are based on the FNLS

equation (37). Here we use the split-step Fourier™"”
(@) A=70m

100
50

0
2y —50
=0 550" 4 um

method to provide the nonlinear equation a numerical
solution, where the nonlinear and dispersion part could
be treated separately with only a small error in a small

(b) A,=60 m

lul /m

100
50

0
= -0.5 4
-100 0 t/h

Fig.3. Numerical evolution of waveform propagating from east to west in research region. (a) A, =70 m;
() Ay =60 m; (¢) Ay =50 m; (d) A; =40 m.
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step. In this algorithm, it is important to choose the ap-
propriate half width L and step size Ax, so that we
could carry out an accurate and stable simulation. After
repeating by N times, the wave with initial half width
L will travel for a distance of NAx. All the numerical
simulations are performed on Matlab platform, where
the waveform variation will be clearly displayed in the
time-space evolution plot. Fig.3 shows the numerical e-
volution simulations of a nonlinear-wave-packet propa-
gating from west to east of research area. In Fig. 3,
The t means propagation time, z means width of wave,
and | u| means the amplitude of internal wave. A, is
initial amplitude.

Fig. 3 includes four different conditions where the
initial amplitude A, is 70 m, 60 m, 50 m and 40 m, re-
spectively. The initial waveform half-width L applied to
all conditions is 2000 m and the step size Ax = 1. 32 m.
After traveling over 65 km, the internal-wave amplitude
reduces to only 10 m, 12 m. 15 m and 22 m. Mean-

360

@
340}

320+
300

280 |

Dispersion coefficient «

260 |

240 ' : : : :
700 750 800 850 900 950 1000

h, /m

while, the width of four waveforms has been broadening
all the time. We could conclude that the waveform,
during propagation, tends to be more and more stable.
Our simulation result does coincide with the remotely
observed images in Fig. 2. The internal waves may
cause the variation of ocean surface roughness, which
optically displays dark and bright bands in satellite MO-
DIS images. The distance between the dark and bright
bands has a linear relation with the waveform width. In
Fig. 2, we could find that the dark/bright distance is in-
creasing when the wave travels from east to west. So
this indicates that the numerical simulation is effective.

In order to understand why waveform broadens
during propagation, a parametric study of « and j3 needs
to be developed. We use the data of p, s p,» g and A, in
former part of this section, and now « and S only de-
pend on the lower layer depth h,. By calculating (35)
and (36), we have the distribution of « and g versus I,
shown in Fig.4(a) and Fig.4(b), respectively.

~0.851thy
-0.90
-0.95
~1.00
-1.05
-1.10
-L15
-1.20
-1.25

-1.30 : - SR -
700 750 800 850 900 950 1000

h, /m

Nonlinear coefficient § /10-°

Fig.4. Dispersion coefficient « and nonlinear coefficient gas a function of %, is shown in (a) and (b).

As the nonlinear internal waves will lose their en-
ergy over gradually sloping bathymetry, the value of «
and f must be reducing in order to maintain the wave-
form. So Fig. 4 indicates the two effects described by
our equation are coincident with rules of fact. (Note
that the nonlinear coefficient 8is in negative.) Besides,
the nonlinear effect could make the waveform encounter
breaking or distortion, while the dispersion effect tends
to flat the waveform. According to Fig. 3, the internal
wave tends to broaden as it propagations. The phenom-
enon implies it is the dispersion effect that gradually
dominates in the interaction of the two effects and
makes the waveform widen.

3.2 Group velocity verification

Another test for our theory is to calculate the group
velocity ¢, by (26) and gives the comparison with MO-
DIS images. As many internal waves in SCS are genera-
ted by the semi-diurnal tides, their occurence cycle is a-
bout 12 hours. The adjacent waves indicated with red
arrows in Fig. 2 (a) are generated at the same source
region but at different tidal cycles. Their separation is
the distance of successive internal waves, which could
be calculated by the longitude and latitude on the map.

With the approximate distance D of 55 km in MODIS
image and the tidal cycle T of 12 h, we estimate the
velocity by D/T = 1. 28 m/s. Meanwhile, the wave
group speed obtained by (26) is ¢, =1.32 m/s . We
could consider they are in good agreement because some
external environmental parameters such as particular
changes in stratification current and bathymetry are ig-
nored here. So this may demonstrate that the FNLS
model is accurate and suitable for large-amplitude inter-
nal-wave propagation in deep-sea.

4 Conclusions

In this paper, by using the method of perturbation
expansions, we have derived the FNLS equation to de-
scribe the evolution of large-amplitude internal waves in
two-layer deep water configurations.

Numerical simulations using the FNLS are per-
formed in SCS by the step Fourier arithmetic on Matlab.
The simulations demonstrate that the waveform tends to
broaden and the amplitude gradually decreases. Com-
pared with some MODIS images, the evolution plots and
the theoretical group velocity are in agreement with the
observed results. From further parametric study, we
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find that the dispersion effect comes to dominate in the
interaction with nonlinear effect and broadens the wave-
form during the wave's propagation.
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