文章编号: 0258-7025(2010)Supplement 1-0181-05

基于硅光波导四波混频的色散监测技术

宋牟平 邹良港

(浙江大学信息与电子工程学系,浙江杭州 310027)

摘要 光性能监测是实现可重配置波分复用光网络的一个关键技术。随着光通信速度从 10 Gb/s 提升到 40 Gb/s 甚 至以上,对光通道残余色散的容忍度下降到原来的 1/16 甚至以下,需要对光通道的色散进行实时监测。利用非线性 波导器件可进行全光域色散监测,硅光波导具有较强的非线性特性,其非线性折射率系数可达 5×10⁻¹⁸ m²/W。当 受光网络色散作用的信号光和探测光一起通过硅波导时,将产生四波混频非线性效应,光通道中不同色散值会产 生不同程度的四波混频效应,通过测量由四波混频效应产生的光谱变化结果,可对波分复用光网络的色散进行监 测。采用损耗系数为 0.2 dB/cm,长度为 3 cm 的硅波导,模拟研究结果表明色散监测范围可达±40 ps/nm,从而可 以实现光网络色散的芯片级监测。

关键词 光通信;色散监测;硅光波导;四波混频 中图分类号 TN929.11 **文献标识码** A **doi**:

doi: 10.3788/CJL201037s1.0181

Chromatic Dispersion Monitoring Based on Four Wave Mixing in Silicon Optical Waveguides

Song Muping Zou Lianggang

(Department of Information and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China)

Abstract Optical performance monitoring (OPM) is one of the key techniques of the reconfigurable wavelengthdivision-multiplexing (WDM) optical networks. When the optical communication speed rises from 10 to 40 Gb/s and above, the residual chromatic dispersion (CD) tolerance of the optical channel is only 1/16 of the former 10 Gb/s system. So CD monitoring is the critical technique for WDM optical channels. Integration and all-optical domain can be achieved when using the nonlinear effects of optical waveguides to realize CD monitoring. Silicon optical waveguides have the relatively large nonlinearity with the nonlinear refractive index as 5×10^{-18} m²/W. After going through the WDM network with CD effects, the signal light wave has the four wave mixing (FWM) effect with the probe light in the silicon waveguide. This FWM effect induces changes in the output spectrum, and different dispersions of the optical channel lead to the varied effects of FWM. So, when detecting the different spectrum changes relates to FWM, the optical channel CD can be monitored. In this paper a 3 cm silicon optical waveguide is adopted with the loss index of 0.2 dB/cm. The monitoring dispersion range can be ± 40 ps/nm. The results indicate that this OPM technique can be used to monitor the CD of the optical network on chip level.

Key words optical communications; dispersion monitoring; silicon optical waveguide; four wave mixing

1 引 言

随着光通信技术的不断发展和网络通信的持续 增长,基于点到点的光通信系统正转变为可重配置 的波分复用(WDM)智能光网络^[1],相应的光通信 传输速率和容量都有很大程度的提高。但随着传输 距离的增大和网络路由的变化,端到端光通道中的 色散(CD)和非线性效应等不仅累积而且随时间和 环境的改变而改变,对高速光信号通信的影响将变 得越来越明显,如40 Gb/s系统的色散容限仅仅是 10 Gb/s系统的1/16^[2]。因此,对于高速智能 WDM光网络,光性能监测(OPM)^[1,3]是必不可少 的,其中色散是光通信系统中影响光性能的一个重

收稿日期: 2010-04-20; 收到修改稿日期: 2010-06-03

作者简介: 宋牟平(1971—),男,博士,副教授,主要从事新型光子器件及光纤通信/传感等方面的研究。 E-mail: songmp@zju. edu. cn

中

光

要因素,对色散进行实时监测具有重要的现实意义。

光网络虽可对光通道中的色散进行分段光纤色 散补偿,但仍会有残余色散,且随着传输距离的加 大,残余色散不断累积,最终影响信号质量。现有的 色散监测技术主要方案有:射频时钟信号分析色散 监测技术^[4]、基于异步光取样和柱状图统计分析的 色散监测技术^[5]、副载波调制色散监测技术^[6]、基于 双光子吸收的监测技术以及利用自相位调制 (SPM)、交叉相位调制(XPM)和四波混频(FWM) 等非线性效应^[7~10]的监测技术。利用光器件或光 波导的非线性效应进行色散监测不仅可以实现全光 域 OPM,而且可以达到微型化集成化。

随着硅集成电路加工工艺的进步,以及用户对 通信带宽要求的不断提高,基于成熟集成电路加工 工艺的硅光子器件正成为研究热点^[11,12]。采用硅 基绝缘(SOI)晶片,以Si(折射率 $n \approx 3.45$)作为芯 层,SiO₂(折射率 $n \approx 1.45$)作为包层,可制作出高光 折射率差的硅光波导。在光通信波长窗口,硅具有 杰出的线性和非线性光学性能^[13]:其光损耗可达 1 dB/cm以下,模式场有效面积在 1 μ m² 以下,光克 尔(Kerr)效应是普通光纤的 100 倍。本文利用硅光 波导的四波混频效应进行色散监测,研究结果表明 此技术不仅可以实现对光通信网络残余色散的监 测,还有助于实现光性能监测的芯片级集成化。

2 原 理

2.1 硅光波导的四波混频效应

硅光波导和光纤都具有四波混频非线性效应。 当信号光和探测光一起通过光传输介质时,通过四 波混频非线性作用产生新频率光,使得输出光频谱 产生变化。假定输入光传输介质的信号光角频率为 ω,探测光角频率为 ω,则四波混频^[14,15]产生新的 两束光波的角频率分别为

$$\omega_{\rm c}=2\omega_{\rm p}-\omega_{\rm s}\,,\qquad(1)$$

$$\omega_{\rm sat} = 2\omega_{\rm s} - \omega_{\rm p}. \tag{2}$$

这里取 ω_p>ω_s,ω_c 对应的光波称为反斯托克斯 光,ω_{sat}对应的光波称为斯托克斯光。

要在光传输介质中产生有效的四波混频作用, 信号光、探测光、反斯托克斯光和斯托克斯光必须满 足相位匹配条件,即

 $\Delta k = (\tilde{n}_c \omega_c + \tilde{n}_{sat} \omega_{sat} - \tilde{n}_s \omega_s - \tilde{n}_p \omega_p) / c = 0, (3)$ 式中 Δk 为波矢失配量,折射率 $\tilde{n}_s, \tilde{n}_p, \tilde{n}_c, \tilde{n}_{sat}$ 表示光 纤模式下的四种光对应的有效折射率, c 为光速。 由于硅光波导具有较大的非线性系数,较短的波导 (厘米量级)就可产生所需的非线性作用,因此可忽略相位匹配条件的限制。

硅光波导中产生的四波混频过程可以描述 为^[14,15]

$$\frac{\partial A_{s}}{\partial z} = -\frac{\alpha}{2}A_{s} - \frac{i}{2}\beta_{2}\frac{\partial^{2}A_{s}}{\partial t^{2}} + i\gamma A_{p}^{2}A_{c}^{*} + 2i\gamma A_{p}A_{sat}A_{s}^{*}, \qquad (4)$$

$$\frac{\partial A_{p}}{\partial A_{p}} = -\frac{\alpha}{2}A_{p} - \frac{i}{2}\partial^{2}A_{p} + \frac{i}{2}A_{p}^{2}A_{p} + \frac{i}{2}A$$

$$\frac{\partial z}{\partial z} = -\frac{\pi}{2} A_{\rm p} - \frac{1}{2} \beta_2 \frac{\partial t^2}{\partial t^2} + i\gamma A_{\rm s}^2 A_{\rm sat}^* + 2i\gamma A_{\rm s} A_{\rm c} A_{\rm p}^* , \qquad (5)$$

$$\frac{\partial A_{\rm c}}{\partial z} = -\frac{\alpha}{2} A_{\rm c} - \frac{\rm i}{2} \beta_2 \frac{\partial^2 A_{\rm c}}{\partial t^2} + i\gamma A_{\rm p}^2 A_{\rm s}^* + 2i\gamma A_{\rm p} A_{\rm s} A_{\rm sat}^*, \qquad (6)$$

$$\frac{\partial A_{\rm sat}}{\partial z} = -\frac{\alpha}{2} A_{\rm sat} - \frac{\rm i}{2} \beta_2 \frac{\partial^2 A_{\rm sat}}{\partial t^2} +$$

$$i\gamma A_s^2 A_p^* + 2i\gamma A_s A_p A_c^* , \qquad (7)$$

式中 A_s 表示信号光幅度, A_p 表示探测光幅度, A_c 表示由四波混频效应产生的反斯托克斯光幅度, A_{sat} 表示斯托克斯光幅度; β_2 为二阶色散系数, α 为损 耗系数, $\gamma = \frac{n_2 \omega_0}{cA_{eff}}$ 为非线性系数, n_2 为非线性折射 率系数, ω_0 为中心角频率, A_{eff} 为有效模式场面积。 在一定的硅光波导参数下,运用分步傅里叶方法^[14] 对传输方程组进行数值计算,从而可得到经过硅光 波导非线性作用的输出光信号。

2.2 色散监测

在WDM光网络中,由于色散作用,信号光波 形会发生变化。当信号光与探测光一起输入到硅光 波导,两束光在波导中将产生四波混频作用,生成反 斯托克斯光和斯托克斯光。硅光波导中四波混频的 强弱和输入波导的光信号峰值功率有关。在光网络 中,由于色散的存在,会使接收光信号波形展宽,峰 值功率下降。不同的色散值会使信号峰值功率下降 程度不同,进而在硅光波导中产生不同程度的四波 混频效应,即生成的新频率光的功率值不同。通过 适当设置光带通滤波器的中心频率和带宽,滤出新 频率光分量,根据滤出功率即可实现色散监测。即 当色散较小时,硅光波导中信号光峰值功率较大,波 导中 FWM 效应较强,滤波器滤出的光功率值也较 大。当色散较大时,信号光峰值功率较小,FWM 效 应相应较弱,则滤波器滤出的光功率值较小。

图 1 为 33% RZ-OOK 信号格式下, CD 值 f_{CD} 分别取 10 ps/nm 和 30 ps/nm 时的硅光波导输出 信号频谱图。这里的非线性作用包括自相位调制、 交叉相位调制、四波混频效应。滤波器 OBPF1 和 OBPF2 滤取的分别是由四波混频效应生成的反斯 托克斯光和斯托克斯光。可以看出,在这两种 CD 值的条件下,两个滤波器滤出的光功率值都是不同 的。由此可以通过测量滤波器滤出的光功率来达到 对色散监测的目的。

图 1 CD 值取 10 ps/nm 和 30 ps/nm 时的硅光波 导输出信号频谱图

3 研究结果

图 2 是基于硅光波导 FWM 效应的色散监测模 拟系统。这里采用 3 cm 长的硅光波导,波导有效场 面积 A_{eff} 为 0. 18 μm^{2[15]}, 二阶色散系数 β₂ 为 1.118 ps²/m^[16],线性损耗系数 α 为 0.2 dB/cm^[17],非 线性折射率系数 n_2 为 5×10⁻¹⁸ m²/W^[17]。采用峰值 功率 60 mW,中心频率 f_s 为 193.414 THz(中心波长 为1550 nm),占空比为33%的40 Gb/s RZ-OOK 信 号;经过色散模拟器后和直流探测光耦合在一起,探 测光中心频率 f_p 为 193.614 THz, 功率 20 mW。耦 合后的光经过硅光波导,由于硅光波导的 FWM 效 应,其输出光谱发生畸变。输出光通过耦合器分成功 率相等的3路,其中一路直接通过光功率计测量功率 值 P₀,其他 2 路通过不同的带通滤波器滤波后再接 人光功率计,测出光功率 P_1 和 P_2 。采用 P_1/P_0 , $P_2/$ P。作为色散监测的监测参量。对硅光波导的输出光 谱进行分析之后,选定的两个滤波波段分别是 f_a+ 200 GHz, f_s-200 GHz,即反斯托克斯光和斯托克斯

图 2 基于硅光波导四波混频效应的色散监测模拟系统 Fig. 2 Simulation setup for CD monitoring based on FWM in slicon optical waveguide

光的中心频率处,前者滤波器带宽取 170 GHz,后者 滤波器带宽取 100 GHz。

3.1 残余色散监测结果

图 3,4 为基于硅光波导四波混频效应的残余色 散监测结果曲线。图 3 是带通滤波器 OBPF1(中心 频率在 f_p +200 GHz 波段)的测量光功率比值(P_1 / P_0)的归一化结果,即归一化的反斯托克斯光功率; 图 4 是带通滤波器 OBPF2(中心频率在 f_s -200 GHz 波段)的测量光功率比值(P_2/P_0)的归一化结果,即 归一化的斯托克斯光功率。可以看出,不同的 CD 值引起不同程度的四波混频效应,最终使得带通滤 波器滤得的光功率不同,因此可以利用 FWM 效应 实现对 CD 的监测。

光功率比值 P_2/P_0 Fig. 4 Normalized optical power ratio P_2/P_0 at the OBPF2 (f_s -200 GHz)

对于如图 3 所示的 f_p +200 GHz 波段处(反斯 托克斯光)的监测结果曲线,光最大功率值和最小功 率值相差只有 0.09 dB,这对光功率计的灵敏度要 求很高,同时也难以分辨出信道中噪声对监测结果 的影响。因此,采用在 f_s -200 GHz 波段处对斯托

光

克斯光进行监测,如图 4 所示,监测的最大功率差值 约 3.1 dB,监测范围约±40 ps/nm,实现了基于硅 光波导 FWM 效应的色散监测。

3.2 硅光波导色散对监测结果的影响

硅光波导本身存在一定的色散,需要分析硅波导 中存在的色散对监测结果的影响。图 5 为硅光波导的 二阶色散系数 β₂ 分别取 1.118,0 和一1.118 ps²/m 时 在 f_s-200 GHz波段处的 CD 监测结果曲线。从图中 可以看出,在监测范围内 3 条曲线的形状都很相近,都 能实现±40 ps/nm 范围内的残余色散监测。另一方 面,曲线间也存在平移现象,β 从 1.118 ps²/m 到 0 到 一1.118 ps²/m的变化过程中,曲线向左平移;并且在监 测范围的边缘处,曲线的差异增大,可以预见到当色散 增大到一定程度时,会对监测范围有所影响,因此实验 用硅光波导的色散也不能太大。所以,利用硅光波导 的 FWM 效应进行残余色散监测,硅光波导自身的色 散值在一定范围内时,对监测结果的影响基本可以 忽略。

3.3 硅光波导损耗对监测结果的影响

硅光波导的损耗是一个重要的性能影响因素, 需要研究硅光波导损耗对监测结果的影响。图 6 为 损耗系数 α 分别取 0.1,0.2 和 4 dB/cm 时在 f_s — 200 GHz波段处的 CD 监测结果曲线。可以看出,3 条曲线形状接近,都能实现±40 ps/nm 范围内的色 散监测。但是,当线性损耗比较大时,监测精度有所 下降,如线性损耗系数 α 为 0.2 dB/cm 时,监测的功 率最大差值约 3.1 dB,当 α 增大到 4 dB/cm 时,监 测的功率最大差值降为 2.4 dB。另外,硅光波导中 的总损耗不能太大,否则光功率计将因输出功率过 小而难以测量。因此,硅光波导的线性损耗在小于 4 dB/cm时,对色散监测的影响在可容忍范围内。

图 6 不同损耗系数 a下,在滤波器 OBPF2 处的 归一化光功率比值 P_2/P_0 Fig. 6 Normalized optical power ratio P_2/P_0 at

the OBPF2 in different values of α

3.4 滤波器带宽对监测结果的影响

在前面基于硅光波导 FWM 色散监测的研究 中,滤取斯托克斯光的滤波器带宽取 100 GHz。但 实际系统中难以保证滤波器带宽非常精准,因此有 必要分析带宽对监测结果的影响。图 7 为滤波器中 心频率在 $f_s = 200$ GHz 处,带宽为 100 GHz, 110 GHz时的 CD 监测结果曲线。可以看出,2 条曲 线都能实现±40 ps/nm 范围内的残余色散监测。 因此在实际应用中,滤波器的带宽略微变化,也不影 响对色散的监测。

图 7 不同滤波器带宽下,在滤波器 OBPF2 处的 归一化光功率比值 P₂/P₀

Fig. 7 Normalized optical power ratio P_2/P_0 at the OBPF2 with different filter bandwidths

4 结 论

光性能监测是实现 WDM 智能光网络的一种 重要技术,基于硅光波导较大的非线性系数,采用硅 光波导的四波混频效应可实现对光通道色散的监 测。研究结果表明以四波混频产生的斯托克斯光功 率作为监测参数,可较好完成对 CD 的监测,色散监 测范围可达±40 ps/nm,而且在硅光波导自身的色 散值小于 1.118 ps²/m,波导损耗小于 4dB/cm,以 及滤波器带宽略微变化时,对色散监测的影响可以 忽略。因此该光性能监测技术可有效应用于 40 Gb/s波分复用光网络的芯片级色散监测。

参考文献

- 1 Jun Haeng Lee, Hongxiang Guo, Takehiro Tsuritani *et al.*. Field trial of all-optical networking controlled by intelligent control plane with assistance of optical performance monitors [J]. *J. Lightwave Technol.*, 2009, **27**(2): $94 \sim 100$
- 2 K. F. Tsai, W. I. Way. Chromatic-dispersion monitoring using an optical delay and add filter [J]. J. Lightwave Technol., 2005, 23(11): 3737~3747
- 3 Y. C. Chung. Optical performance monitoring techniques; current status and future challenges [C]. 34th European Conference on Optical Communication, 2008, Brussels, 21~25
- 4 Y. K. Lize, L. Christen, J. Y. Yang *et al.*. Independent and simultaneous monitoring of chromatic and polarization-mode dispersion in OOK and DPSK transmission [J]. *IEEE Photon*. *Technol. Lett.*, 2007, **19**(1): 3~5
- 5 Z. Li, G. Li. Chromatic dispersion and polarization-mode dispersion monitoring for RZ-DPSK signals based on asynchronous amplitude-histogram evaluation [J]. J. Lightwave Technol., 2006, 24(7): 2859~2866
- 6 Chen Ming, Zhang Yejin, He Lina *et al.*. Application of polarization SCM for simultaneous monitoring fiber CD and PMD [J]. *J. Optoelectronics Laser*, 2007, **18**(6): 683~686 陈 明, 张冶金, 贺丽娜 等. 偏振副载波调制在光纤色散与 PMD 监测技术中的应用[J]. 光电子 激光, 2007, **18**(6): 683~686
- 7 J. L. Blows, P. Hu, B. J. Eggleton. Differential group delay monitoring using an all-optical signal spectrum-analyser [J]. Opt. Commun., 2006, 260(1): 288~291
- 8 S. Li, D. V. Kuksenkov. A novel dispersion monitoring technique based on four-wave mixing in optical fiber [J]. *IEEE Photon. Technol. Lett.*, 2004, **16**(3): 942~944
- 9 Wang Qing, Liu Xiaoming, Wang Yan et al.. Stimulated

Brillouin scattering suppression and optical parametric amplification in highly nonlinear optical fiber [J]. *Chinese J. Lasers*, 2004, **31**(7): $802 \sim 806$

王 青,刘小明,王 燕等.高非线性光纤中受激布里渊散射的 抑制和光参量放大[J].中国激光,2004,**31**(7):802~806

10 Zou Lianggang, Song Muping. Dispersion monitoring based on self phase modulation and cross phase modulation effects in semiconductor optical amplifier [J]. Chinese J. Lasers, 2009, 36(s2): 277~281

邹良港,宋牟平.基于半导体光放大器自相位调制和交叉相位调制的色散监测技术[J].中国激光,2009,**36**(s2):277~281

- 11 A. Barkai, Y. Chetrit, O. Cohen *et al.*. Integrated silicon photonics for optical networks [J]. J. Opt. Netw., 2007, 6(1): 25~47
- 12 Tang Yanzhe, Wang Yuelin, Wu Yaming. Transition loss and polarization effect in planar lightwave circuits based on silicon-oninsulator rib waveguides [J]. Acta Optica Sinica, 2004, 24(2): 203~207

唐衍哲,王跃林,吴亚明. 硅基脊型波导器件过渡区损耗及偏振 效应[J]. 光学学报,2004,24(2):203~207

- 13 B. Jalali, S. Fathpour. Silicon photonics [J]. J. Lightwave Technol., 2006, 24(12): 4600~4614
- 14 G. P. Agrawal. Nonlinear Fiber Optics [M]. Jia Dongfang, Yu Zhenhong *et al.* Transl.. Beijing: Publishing House of Electronics Industry, 2003. 234~245
 C. P. Agrawal. 非线性光纤光学原理及应用 [M]. 贾东方,余震 虹等译. 北京:电子工业出版社, 2003. 234~245
- 15 Q. Lin, Oskar J. Painter, Govind P. Agrawal. Nonlinear optical phenomena in silicon waveguides: modeling and applications [J]. *Opt. Express*, 2007, **15**(25): 16604~16644
- 16 Ozdal Boyraz. Tejaswi Indukuri, Bahram Jalali. Self-phasemodulation induced spectral broadening in silicon waveguides [J]. Opt. Express, 2004, 12(5): 829~834
- 17 C. S. Wong, T. K. Liang, M. W. K. Mak *et al.*. Measurement of nonlinear optical properties of silicon waveguide at 1.55 pm wavelength [C]. Lasers and Electro-Optics, 2001, CLEO '01, Baltimore, MD. CLEO 2001, 178