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Abstract The properties of Modified Laguerre-Gaussian beams (MLGBs) propagating through a fractional Fourier
transform (FRET) optical system are investigated. The analytical transformation formula for MLGBs propagation
through an FRFT optical system is derived based on definition of the FRFT in the cylindrical coordinate system. By
using the derived formula, the normalized intensity distribution of MLGBs in the FRFT plane is graphically illustrated
with numerical examples, and the influence of different parameters on the normalized intensity distribution is dis-

cussed.
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1 Introduction

Optical vortices have drawn increasing attention
due to their various applications, such as trapping and
manipulation of small particles, metrology, microli-
thography, medical imaging, and surgery"'™*). Many
different vortex beams, such as Bessel-Gaussian,
Laguerre-Gaussian, Hermite-Gaussian, hypergeomet-

[1=%] | have been studied

ric-Gaussian ( HyGG) beams
theoretically and experimentally. Modified Laguerre-
Gaussian beams (MLGBs), special cases of HyGG
beams introduced by Karimi et al., have attracted
much interest in recent years™"!.

In the past decades, fractional Fourier transform
(FRFT) has been widely studied because of its wide ap-
plication in signal processing, beam shaping, beam a-
nalysis, optical security, etc.. FRFT was first intro-
duced into optics in 1993 . Since then, much work
has been done on its properties, optical implementations

[12~15]  Recently, much work has been

and applications
done about different kinds of beams passing through

both apertured and unapertured optical FRFT sys-
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tems™®~%', such as hollow Gaussian™”,

]

elliptical
Gaussian'** ,  Hermite-Gaussian™®, Hermite-Laguerre
Gaussian'®’ , Bessel-Gaussian®"’, and partially coherent
Gaussian Schell-model beams-*>*!. However, to the
best of our knowledge, MLGBs have never been so con-
sidered. For the properties and wide application of ML-
GBs. the study of the behavior of MLGBs through FR-
FT optical systems would be of practical interest and
importance. In this paper, based on the definition of
FRFT, an analytical transformation formula for a
MLGB passing through the FRFT system is derived,
and the properties of a MLGB in the FRFT plane are in-

vestigated with numerical examples.

2 FRFT of MLGBs

The electric field of a MLGB at 2z, = 0 in the cylin-

drical coordinate system is defined as follows "

et nl
+ 170, ) ,

(1)
where C, is an arbitrary amplitude constant, »; and

2
"

E,., (ri+0,:0) = c0<i)

Wy

exp (* 5
Wy

0, are the radial and the azimuthal coordinates, w, is
the Gaussian waist width, m is a nonnegative inte-
ger, n 1s the beam order.

The two kinds of optical setups introduced by
Lohmann for implementing FRFT are shown in Fig. 1.
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The Lohmann I system and the Lohmann [[ system
are equivalent, where f i1s the standard focal
length, f, is the focal length of the lens, d is the
distance between the input plane P, and the frac-
tional Fourier plane P,, p is the fractional order of
the FRFT, and ¢ is given by ¢ = p « (x/2). Obvi-

P, P,
S=flsing

/

(a)

d=fltan (¢/2)U d=fltan (p/2)

s

ously, the FRFT system on the fractional order is
periodic with the period of 2. For the case p = 4k
(k is an arbitrary integer) , d = 0. For the case p =
4k+2, d—>co. When p = 4k-+1, the FRFT reverts
to the conventional Fourier transform.

p P

1 2

- SaneR)

()

d=flsin ¢

Fig.1 Optical system for performing the FRFT. (a) Lohmann I system, (b) Lohmann ]| system.

Based on the well-known Collins integral formula, the propagation of a MLGB through the FRFT of a p - or-

der optical system can be treated as'”

oo 2n

EZ(VZ 902) - m

0

. , y
! J J‘El(rlaﬂl)exp[M}exp[—i 2nryry
0 Aftansp

0S8, b, )]r, drdo . (2)

where A is the wavelength of the input beam, r,, 4, , and r, , 6, are the radial and azimuthal coordinates in the

input and output planes, respectively.
Substituting Eq. (1) into Eq. (2), one can obtain

2nC,

o

E(rz 302) —
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247]

The following integral formula-*" is used:

J‘ ( 7’1 >m+\n < r? )
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where I'(+) is the gamma function and , F, (+) is the confluent hypergeometric function.

After tedious but straightforward integration, we obtain the output field distribution at the FRFT plane

as
[n]
T(Co(*i)"’wl(ﬂ) F(im—H n H—])
E(r .0,) = Afsin @ 2
o 2‘”‘/1fsingaw}§"‘”‘ a%’”””‘”F(‘n‘—i—l)
1 - [27r, /(Af sin go)]z imrs . -

1F1{2m+\n\+1,\n\+1, e }XCXp(AftanSD+1m92>, (5)
where 6, and n = 2. It should be noted that the curves
.= 1 ix ) plotted are normalized to the peak intensity. In
w;  Afsing Fig. 2, the intensity distribution of the MLGBs

Equation (5) is the analytical formula of the
MLGBs through the FRFT optical system.

3 Numerical Calculations

The propagation properties of the MLGBs
through FRFT optical systems are studied by using
Eq. (5). In the following calculation, we assume

that f = 100 mm, w, = 1 mm, A = 632. 8 nm, m =

through the FREFT optical system is plotted against
different fractional orders. It is found that when
the fractional order 0 <C p < 1, the intensity distri-
bution of the output beam becomes more and more
convergent with increasing fractional order. When
1 << p < 2, the intensity distribution of the output
beam becomes more and more divergent with in-
the de-

creasing fractional order. Furthermore,
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pendence of the intensity distribution of MLGBs in
the fractional plane on the fractional order p is pe-
riodic, with a period of 2. Thus we can control the
intensity distribution of the MLGB by properly
choosing the fractional order p between 0 and 2. Fi-
nally, we want to point out that the on-axis intensi-
ty (» = 0) in all cases is always zero in the FRFT
plane., which stems from the optical vortex embed-
ded on the axis of a laser beam.

The normalized intensity distribution of the
MLGBs against the beam order is shown in Fig. 3.
The other parameters are the same as those in Fig.

hollow-Gaussian beams, which agrees with Fig.4 in
Ref.[17]. It can be shown that the radius of the
bright ring of the intensity distribution of the MLG-
Bs increases when n increases. It also means that
the dark region of the MLGBs increases as n increa-
ses. Evolution of the intensity distribution of a ML-
GB with different positive integers m in the FRFT
plane is shown in Fig.4. The other parameters are
also the same as those in Fig. 2 except that p = 1.
01. It can be shown that the dark region of the in-
tensity distribution of the MLGBs varies little with
m , but the width of the bright ring increases as m

2 except that p = 1. 01. When the order n = 0, the increases.
intensity distribution shows that MLGBs become
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Fig.2 Evolution of the intensity distribution of a MLGB with different fractional orders p in the FRFT plane.
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Fig.3 Evolution of the intensity distribution of a MLGB with different beam orders n in the FRFT plane.

From what have been discussed above, we find
that we can conveniently control the intensity dis-
tribution properties of MLGBs in the FRFT plane by

properly choosing the fractional order of the FRFT
system and the initial beam parameters.
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Fig.4 Evolution of the intensity distribution of a MLGB with different positive integers m in the FRFT plane.

4 Conclusion

We have studied the propagation of MLGBs
through an FRFT optical system based on the defi-
nition of FRFT in the cylindrical coordinate system.
An analytical formula is derived for the FRFT of
MLGBs. The results show that the intensity distri-
bution properties of MLGBs in the FRFT plane are
closely related to the fractional order and the initial
beam parameters. The derived formulas provide a
powerful tool for analyzing and calculating the FR-
FT of MLGBs. The FRFT optical system provides a
convenient way for controlling the properties of
MLGBs. Our results have potential application in
guiding and manipulating cooling atoms and microp-
articles.
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