文章编号: 0258-7025(2009)Supplement 1-0026-04

高功率环形一体化二极管激光抽运模块研究

高松信石勇雷军魏彬武德勇唐淳

(中国工程物理研究院应用电子学研究所,四川 绵阳 621900)

摘要 通过对抽运模块增益分布、晶体棒应力以及冷却器等特性分析,确定了激光器增益分布的均匀性与二极管激光器(DL)的发散角、抽运源与晶体的距离以及抽运源发射波长等参数的关系,建立了抽运模块聚光腔的设计模型,利用该理论模型设计并封装出了1~16 kW 抽运模块。通过抽运模块性能测试可以得出,该抽运模块可在占空比 20%,工作电流 120 A,水温 25 ℃条件下稳定运行,增益分布均匀性达到 85%,抽运模块的小信号增益系数为 0.148 cm⁻¹。

关键词 光学设计;二极管激光器;高密度封装;精密焊接
中图分类号 TN248.4 文献标识码 A doi: 10.3788/CJL200936s1.0026

Researching of High Power Ringed Diode Laser Module

Gao Songxin Shi Yong Lei Jun Wei Bin Wu Deyong Tang Chun

(Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China)

Abstract The distribution of optic gain, the stress in Nd: YAG rod and the speciality of cooler are analyzed in this paper, the relation among the uniformity of optic gain, the distance between diode laser (DL) and center of Nd: YAG, and the central wavelength of DL is identified. The model of pumping moudle is designed. $1 \sim 16$ kW DL pumping moudles are packaged and tested. The result of measurement shows that it can work at a duty cycle of 20%. The uniformity of optic gain is 85% with input current of 120 A and 25 °C of cooling water temperature the small signal gain is 0.148 cm⁻¹.

Key words optical design; diode laser; high-density package; precision weld

1 引 盲

高功率二极管激光器(DL)以其结构紧凑、长寿 命、高转换效率等优点,已逐渐取代闪光灯抽运成为 固体激光器的抽运源,使高功率固体激光技术的研究 获得了新的生命^[1]。尤其是侧面抽运的棒状激光介 质的抽运模块,相对于端抽运结构,其耦合方式简单, 可充分利用激活区获得高功率输出等特点,成为二极 管激光抽运固体激光器(DPL)的一种重要抽运耦合 方式^[2]。随着高功率 DPL 技术的不断发展,研制高 功率、高占空比、高可靠性二极管激光抽运模块,为高 单脉冲能量、高重复频率、高光束质量 DPL 激光器技 术研究及系统研制提供所需的核心部件,以成为高功 率 DL 发展的重要方向之一。

本文通过对封装的抽运模块光学特性、耦合特性、

可靠性以及增益等关键技术参数的实验研究,对抽运 模块结构、聚光腔以及可靠性进行了优化,并设计了具 有高平均功率、高光束质量、高可靠性的抽运模块。

2 聚光腔优化设计

高可靠性、高转换效率以及均匀抽运耦合效果 是高功率侧抽运模块设计的关键、实验研究发现,抽 运均匀性与聚光腔体的设计关系密切,特别是环形 抽运模块中抽运源与晶体棒之间的距离、晶体棒的 直径以及每圈抽运单元的数量等参数的设计。本文 利用光学设计软件对激光介质中的增益分布进行了 模拟,在模拟计算中,要考虑冷却玻璃棒、冷却水以 及漫反射腔的反射、折射和吸收等。计算中假设腔 内每圈上各 DL 单元发出的抽运光强度是相同的,

作者简介:高松信(1975-),男,硕士,助理研究员,主要从事高功率二极管激光器方面的研究。

基金项目:中物院重点基金(2007A10001)资助课题。

而且二极管激光器快轴方向的强度是高斯分布,慢 轴方向的发散角是 10°。根据模拟的增益分布图可 见,激光器增益分布的均匀性与 DL 的发散角、抽运 源与棒的距离有很大关系,当 DL 在快轴方向的发 散角一定时,随着二极管激光器发光面与晶体棒距 离的增大,抽运的均匀性将提高;但二极管激光器快 轴发散角较大,随距离增加,部分发射光超出了晶体 区域,增益和储能效率将会降低。几种不同参数的 抽运模块增益分布的主要设计参数如表1所示。

表 1 抽运模块增益分布的主要设计参数

Table 1 Parameter of DL module plus distributing

Diameter of crystal rod /mm	\$ 2	ø 3	¢ 10
Dope (atomic fraction %)	1.3	1.3	0.6
Distance of diode from crystal axis $/\mathrm{mm}$	3.75	3.75	12
FWHM vertical beam divergence $/(^{\circ})$	40	40	40
Number of irradiation directions / unit	5	5	11
DL output power /W	120	120	100
Duty cycle / ½	≪20	≪20	≪20

3 抽运模块整体结构设计

抽运模块设计采用环形一体化设计方案,单元 模块采用正多边环形阵列抽运结构,整个模块可由 多个单元模块通过简单的机械结构串连组装而成。 抽运模块的原理示意图及单元抽运结构示意图如 图 1所示。每个二极管激光器单元设计的输出峰值 功率为 150 W,占空比小于 20%,激光介质为 Nd:YAG,晶体棒的长度也可根据用户的需要,方 便串联连接 n 个单元模块,实现不同抽运功率水平。 这种设计优点在于单元环模块可以根据介质棒长短 任意组装,可靠性高,易集成。

图 1 抽运模块整体及单元结构图 Fig. 1 Structure of pump modules

该抽运模块将工程使用的可靠性和耦合效率作 为抽运模块设计的重点,在满足抽运模块可靠性和 耦合效率的同时兼顾其他特性。因此,根据试验测 试结果,抽运模块封装的热阻可达到 0.635 ℃/W, 每个二极管激光器 bar 条可稳定工作到 120 W。设 计中考虑在保证抽运模块增益的同时,尽量减少二 极管激光器单元的数量。

4 抽运功率与晶体热应力关系

根据理论模拟和实验结果,对于同样的激光晶 体棒,其圆周上分布的二极管激光器单元越多,抽运 均匀性就越好,抽运功率也越高,抽运模块的小信号 增益就越高;同时,激光晶体棒吸收抽运光产生的热 就越多,而激光棒产生的热量主要通过棒表面流过 的冷却液带走。这样,晶体棒制冷的表面和较热的 中心就会产生温度梯度,从而产生热应力和机械应 力。随着抽运功率的提高,温度梯度将会不断增加, 所产生的机械应力就会超过棒本身的抗张强度,使棒 表面出现裂纹,甚至断裂。因此,在抽运模块设计中首 先要考虑不同尺寸的棒单位长度上的功率密度。以下 是设计的 16 kW 放大级抽运模块的设计参数和应力模 拟。设计按照每个二极管激光器单元的峰值功率 120 W计算,需要的总抽运功率为16 kW,根据模拟计 算结果,激光晶体的有效应力为132.5 N/mm²,棒中 心的最高温度为 78.6 ℃,温差为 53 ℃,比Nd:YAG 材料的断裂极限176.4 N/mm² 小了 24%,达到了设 计要求,结果如图2,图3所示。

图 3 晶体棒应力分布 Fig. 3 Stress distributing of rod

5 冷却器散热能力的理论计算

根据封装结构,对整个抽运模块的冷却能力进 行了模拟计算,由于二极管激光器是以正多边形分 布于冷却器环内,每个边的散热效果相同,可取其中

36 卷

一边进行热分析,其结构示意图如图 4 所示。根据 热力学公式,影响系统散热能力的因素可根据热阻 表示,系统总的热阻可表示为

$$R_{\rm th} = R_{\rm cond} + R_{\rm heat} + R_{\rm conv}, \qquad (1)$$

$$R_{\rm cond} = \frac{1}{A} \times (D/K_{\rm Cu+BeO}), \qquad (2)$$

$$R_{\text{heat}} = 1(\rho C_{\text{p}} f), \qquad (3)$$

$$R_{\rm conv} = 1/(Lhnp), \qquad (4)$$

式中 R_{cond} 为体热阻,A为芯片导热面积,D为热源 与冷却水间的距离, K_{Cu+BeO} 为材料热阻; R_{heat} 为冷却 水本身热阻, ρ 为水密度, C_p 为水热容量,f为流速; R_{conv} 为冷却水边界层热阻,L为微通道长度,h为对 流换热系数,n为通道数,p为通道结构参数。通过 简单估算,对水 $\rho C_p = 4.18 \text{ J/(K} \cdot \text{ cm}^3)$,流速为 10 cm³/s, $R_{heat} = 0.024 \degree C/W$; $R_{cond} \approx 0.203 \degree C/W$; $R_{conv} \approx 0.378 \degree C/W$; $R_{th} \approx 0.605 \degree C/W$ 。DL 工作在 120 W,占空比 20%,热载约为 30 W 计算,在水温 25 ° C时,二极管激光器的工作结温为 43 ° C。

图 4 模块冷却结构示意图 Fig. 4 Structure of cooling module

6 抽运模块性能测试

通过对抽运模块参数的不断优化,设计了 1~ 16 kW 不同抽运功率的模块,内部绕激光晶体棒呈 正 n 边阵列排布,可根据需要串连多个单元模块,抽 运模块实物照片如图 5 所示。将抽运模块老化考核 后,对封装的抽运模块性能进行了测试,首先对模块 的冷却能力进行了测试。根据测试结果,2 个大气

图 5 大功率抽运模块实物照片 Fig. 5 Photo of high power DL modules

压下冷却水流量为 10 L/min,根据理论计算,水流 量完全满足系统的散热冷却要求。同时,利用光谱 仪对抽运模块的光谱进行了测试,在冷却水温度为 25 ℃,流量为 10 L/min 工作条件下,分别测试了不 同占空比下的光谱分布,抽运模块工作在占空比 0.05%(15 Hz,35 μ s),20%(1000 Hz,200 μ s)条件 下的光谱,在占空比 20%下中心波长为 806.24 nm, 相对于低占空比 801.08 nm 中心波长漂移 5.16 nm, 芯片中心波长随热沉温度的漂移为 0.27 nm/℃,在 占空比 20%,电流 120 A条件下工作时,电光效率 约为 45%,结温上升了约 18 ℃,可以估算出抽运模 块的整体热阻约为 0.65 ℃/W。

实验还测试了激光抽运模块的增益分布和小信 号增益系数,用振荡级输出光作为抽运模块的输入 光,控制输入能量远小于饱和通量(控制在1mJ以 下),记录输入光功率 I₀。给抽运模块加至指定电 流,记录输出光功率 I₁。

I₀ 与 I₁ 间的关系可描述为

$$g_0 = \frac{\ln(I_1/I_0)}{L},$$
 (5)

式中L为增益长度。

测试结果显示,500 Hz 重复频率,250 μs 脉冲 宽度,120 A 工作条件下,对于不同掺杂、不同直径 的晶体棒,小信号增益系数如表 2 所示。并且对不 同抽运模块的增益分布进行了测试,结果如图 6~ 图 11 所示。

图 6 \$\phi_2 mm 棒模拟增益分布(二维和三维图) Fig. 6 Simulating plus for \$\phi_2 mm rod (2D and 3D)

图 7 实验测试荧光分布(二维和三维显示) Fig. 7 Testing of light distribution (2D and 3D) 根据以上测试结果,各种结构的抽运模块的增

图 9 实验测试荧光分布(二维和三维显示) Fig. 9 Testing of light distribution (2D and 3D)

图 10 \$\phi10 mm 棒模拟增益分布(二维和三维图) Fig. 10 Simulating plus for \$\phi10 mm rod (2D and 3D)

图 11 实验测试荧光分布(二维和三维显示) Fig. 11 Testing of light distribution (2D and 3D) 益分布理论模拟与测试的荧光分布吻合得较好。如 果二极管激光器与晶体棒的中心距离、快轴发散角 以及晶体棒的掺杂等参数不变,晶体棒直径越小,其 荧光分布均匀性越好,如图 7 和图 9 所示;对于不同 直径的晶体棒,如果二极管激光器发光面与棒中心 的相对距离较近,荧光分布中心将会凸起,并显示出 明显的多边形,如图9所示。如果相对距离太远,荧 光分布中心将会凹陷;因此,二极管激光器与棒中心 距离的优化设计是抽运模块聚光腔设计的关键环 节;另外,二极管激光器的发射波长对增益分布的均 匀性也有很大影响,特别是晶体棒直径较粗时,中心 波长对荧光分布影响更明显。

表 2 抽运模块小信号增益测试结果 Table 2 Testing of DL module plus distributing

Table 1 Testing of BH	nouure prus	anotrio	ating
Diameter of crystal rod $/\mathrm{mm}$	\$ 2	ø 3	¢ 10

Dope (atimic fraction $\%$)	1.3	1.3	0.6
Pump power $/kW$	1	1.5	16
Duty cycle / ½	≪20	≪20	≪20
$g_0/\mathrm{cm}=1$	0.92	0.6	0.148

7 结 论

通过对抽运模块增益分布、晶体棒应力分析以 及冷却器的特性等分析,确定了激光器增益分布的 均匀性与 DL 的发散角、抽运源与晶体的距离、抽运 源发射波长以及二极管激光器单元数量的关系,建 立了抽运模块聚光腔的设计模型,利用该理论模型 设计了 1~16 kW 抽运模块。通过对抽运模块冷却 器能力的分析以及器件可靠性的分析,确定了抽运 模块的整体结构,并封装出了各种抽运功率的模块。 通过抽运模块性能测试可以得出,该抽运模块可在 占空比小于 20%,工作电流 120 A,水温 25 ℃条件 下稳定运行,增益分布均匀性达到 85%,对于掺杂 原子数分数 0.6%,直径 10 mm 的晶体棒,抽运模 块的小信号增益系数为 0.148 cm⁻¹。

参考文献

- Wang Hailin, Zhu Xiao, Yuan Xiao et al.. Output characteristic of diode-side-pumped high power YAG laser[J]. High Power Laser and Partical Beams, 2005, 17(Suppl): 33~36
 王海林,朱 晓,袁 孝等.高功率半导体泵浦固体激光器输出 特性的研究[J].强激光与粒子束, 2005, 17(增刊): 33~36
- 2 W. Koechner. Solid-State Laser Engineering [M]. Sun Wen, Jiang Zhewen, Cheng Guoxiang transl., Beijing: Science Press, 2002
 - W. 克希耐尔. 固体激光工程[M]. 孙 文, 江泽文, 程国祥译, 北京: 科学出版社,2002
- 3 Jurgen Jandeleit, Nicolas Wiedmann, Andress Ostlender *et al.*. Packaging and characterization of high power diode laser [C]. SPIE, 2000, **3945**: 270~277