文章编号: 0258-7025(2009)07-1740-04

LD 抽运 Nd: YVO₄/LBO 543 nm 全固态激光器

姚 $\xi^{1,2}$ 曲大鹏^{1,2} 郑 权^{1,2}

(1中国科学院长春光学精密机械与物理研究所,吉林 长春 130033) 2 长春新产业光电技术有限公司,吉林 长春 130012

摘要 报道了一种能获得 543 nm 激光连续输出的 LD 抽运全固态激光器,通过对谐振腔膜系的设计以及倍频晶体的合理选择和放置,采用长度为 10 mm 的 I 类临界相位匹配 LBO 晶体进行腔内倍频,用功率为 2 W 的 LD 抽运掺杂原子数分数为 0.8%的 Nd: YVO4 晶体,采用简单直腔结构,获得了 543 nm 激光输出。在1.9 W的抽运功率下,最大输出功率为 105 mW。光-光转换效率高达 5.53%,输出功率在 3 h 内长期稳定性优于 3%。

关键词 全固态激光器;激光二极管抽运;543 nm 激光器;Nd:YVO4晶体

中图分类号 TN 248.1

文献标识码 A

doi: 10.3788/CJL20093607.1740

Laser Diode-Pumped Nd: YVO₄/LBO 543 nm All-Solid-State Laser

Yao Yi^{1,2} Qu Dapeng^{1,2} Zheng Quan^{1,2}

(1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin 130033, China

² Changchun New Industries Optics Electronics Technology CO., Ltd, Changchun, Jilin 130012, China

Abstract Continuous wave 543 nm laser emission at powers as high as 105 mW is achieved by using an LD with a power of 2 W to pump 0.8% (atom percent) Nd:YVO₄ crystal, with intracavity frequency doubling in a 10 mm long type I critical phase matching LBO crystal and a simple linear resonator. The optical to optical conversion efficiency is up to 5.53% with the incident pump power of 1.9 W, and the long term stability of the output power is better than 3% in 3 h.

Key words all-solid-state laser; lasers diode pumped; 543 nm laser; Nd: YVO4 crystal

1 引 言

激光二极管(LD)抽运全固态激光器在科研、医疗等众多领域都有着广泛的应用。激光二极管端面抽运结构(纵向抽运)与横向抽运结构相比较,有更强的抽运功率密度,从而使一些相对较弱的跃迁谱线实现连续运转成为可能 $[1^{-3}]$ 。Nd:YVO4晶体作为一种优良的激光增益介质,它的主要跃迁谱线为 $[1064.3\ nm^{[4.5]},1342\ nm^{[6]}$ 和[14.5]914[14.5]914[15]915[15]914[15]916[15]

发射带,它们对应的是同一组能级的不同斯塔克分裂子能级,只要能够抑制增益较强的主要谱线的振荡,就可以在更丰富的波段获得激光输出。

本文报道了一种能获得 543 nm 激光连续输出的 LD 抽运全固态激光器,用 LD 抽运 Nd: YVO4 晶体,通过对谐振腔膜系的设计以及倍频晶体的合理选择和放置,采用 I 类临界相位匹配 LBO 晶体进行腔内倍频,采用简单直腔结构,获得了 543 nm 激光输出。

收稿日期: 2009-03-13; 收到修改稿日期: 2009-04-16

作者简介: 姚 矣(1983—),男,硕士研究生,主要从事全固态激光及非线性变换等方面的研究。

E-mail: bear020121212@yahoo.com.cn

导师简介:郑 权(1973—),男,研究员,博士生导师,主要从事全固态激光及非线性变换等方面的研究。

2 理论分析

2.1 激光晶体

Nd: YVO₄晶体在 $1050 \sim 1100$ nm 波段的非偏振谱有 8 个荧光峰,某些荧光峰同时具有 π 和 σ 偏振分量,而另一些荧光峰则只具有其中一种偏振分量。图 1 是室温下 Nd: YVO₄晶体在⁴ $F_{3/2}$ 和⁴ $I_{11/2}$ 两个能级之间的荧光光谱。从图中可以看出,其中一组斯塔克分裂能级对应的就是 1084 nm 谱线。表 1 列举了 Nd: YVO₄晶体主要的荧光谱线的峰值波长及其偏振标志。

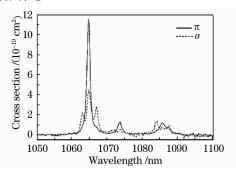


图 1 Nd: YVO4晶体受激发射截面

Fig. 1 Stimulated emission cross section for Nd: YVO₄ 表 1 Nd: YVO₄ 晶体主要荧光谱线的峰值 波长及其偏振标志

Table 1 Wavelength and polarization state of main fluorescence spectrum of Nd: YVO₄

Wavelength/ nm	1064.3	1085.4	1083.8
Polarization state	π and σ	π	σ

由表 1 可知,为了获得 1085. 4 nm 的红外基频光,采用 π 偏振光激发,不仅有利于提高抽运光的吸收效率,而且有利于提高激光发射的效率。由图 1 可知, 1085. 4 nm 谱线的 受激发射截面为 1064. 3 nm 谱线的 1/6,但其受激发射截面是 914 nm和 1342 nm 谱线的 2 倍,故只需要抑制 1064. 3 nm 谱线的起振就能获得 1085. 4 nm 谱线的输出。这里选用镀膜的手段来抑制 1064. 3 nm 谱线从而达到选择 1085. 4 nm 谱线的目的。

2.2 倍频晶体

目前用于产生可见光的倍频晶体常用的有 KTP,LBO 和 BIBO3 种,它们各有优缺点,利用非 线性光学软件,计算了这 3 种晶体对 1085.4 nm 激 光倍频时的参量,结果如表 2 所示[7]。从表 2 可以 看到,KTP和BIBO的有效非线性系数 d_{eff} 较大,约 是 LBO 的 3~4 倍,但 KTP 和 BIBO 的走离角也较 大,约是 LBO 的 $2\sim4$ 倍,根据倍频晶体最大相互作 用距离表达式: $l_{\text{max}}=1.16 \, w/\rho$, l_{max} 为倍频晶体中基 频光与倍频光的最大作用长度, ₩ 为晶体中基频光 斑半径,ρ为倍频晶体中因双折射决定的走离角。 当走离角过大时,倍频晶体的长度选取受 l_{max} 制约, 同时考虑到腔内倍频效率跟有效非线性系数和晶体 长度乘积的平方成正比,相比较 LBO 的效果会更 好,同时在接收带宽和接收角度上,KTP和BIBO 还远不及 LBO 性能好,所以从整体上考虑选择 LBO作为倍频晶体。

表 2 KTP, BIBO 和 LBO 倍频参量的比较

Table 2 Comparison of the frequency-doubling parameters of KTP, BIBO and LBO

Crystal	Phase matching type	$d_{ m eff}$ /(pm/V)	Accepted-angle /(mrad•cm)	Walk-off angle /mrad
KTP	1085(o) + 1085(e) = 543(o)	-3.8 5	5.30	11.20
BIBO	1085(e) + 1085(e) = 543(o)	2.880	2.67	22.71
LBO	1085(o) + 1085(o) = 543(e)	0.834	11.10	6.09

2.3 膜系设计

为了实现 543 nm 激光的输出,必须首先实现 1085. 4 nm 红外基频光的稳定振荡,而对于 Nd: YVO4 晶体,其增益性能最强的谱线是 1064. 3 nm,它将严重抑制 1085. 4 nm 的振荡,所以 要通过一定的手段选择谱线。选择激光谱线的方法 很多,如腔内加入色散棱镜、镀制特殊要求的激光谐振腔薄膜等。这里通过提高谐振腔两腔镜对 1064. 3 nm的整体透过率来抑制它的起振,同时提高谐振腔对 1085. 4 nm 激光谱线的反射率,就可以

获得所需红外基频波长的连续运转。对于 Nd: YVO₄晶体,无论其发射的波长是多少,都是以 π 方向为主,即对 π 方向的抽运光吸收系数高,而 π 方向的受激发射特性优异,而波长为 1083.8 nm 的红外光,由于其偏振态为 σ 态,其受激发射和增益特性都弱于 1085.4 nm 谱线,加上非线性倍频晶体的作用,可以不用附加任何器件便可获得单一波段的红外基频光。

利用薄膜自动设计软件,通过设计合理的光谱特性要求,采用全局搜索和局部优化相结合的方法,

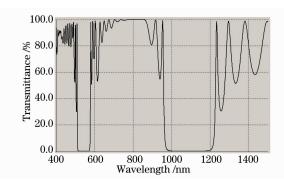


图 2 Nd: YVO4 晶体左端面的透过率曲线 Fig. 2 Transmissivity of the left side of Nd: YVO4 crystal

对膜系进行了优化,获得了可以实现选择 1085.4 nm谱线的膜系。图 2 为 Nd: YVO4晶体左 端面的透过率曲线,图 3 为输出镜的透过率曲线。

3 实验装置与结果

实验装置如图 4 所示。激光二极管最大输出功率为 2 W,中心发射波长为 808.3 nm。抽运光经过耦合光学系统的准直、扩束和聚焦以后注入Nd: YVO_4 晶体,其长度为5mm,掺杂原子数分数为

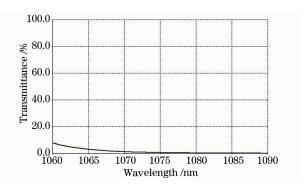


图 3 输出镜的透过率曲线

Fig. 3 Transmissivity of the output coupler 0.8%。Nd:YVO4晶体左端面作为谐振腔的一个端镜,镀有808 nm AR 膜和1000~1200 nm HR 膜,晶体的右端面镀有1064.3~1090 nm AR 膜。输出镜的凹面对1064.3 nm 部分透过(其对1064.3 nm 的透过率约为10%)。而对1085.4 nm 高反(反射率在99.9%),这样的透过损耗足以抑制1064.3 nm 谱线的振荡,而不需要再加入附加损耗。输出镜的平面镀有543 nm AR 膜。LD 由半导体制冷器(TEC1)进行精确温控,使其发射中心波长与Nd:YVO4晶体的吸收峰相重合。整个谐振腔长度约20 mm 并由TEC2 进行温控。

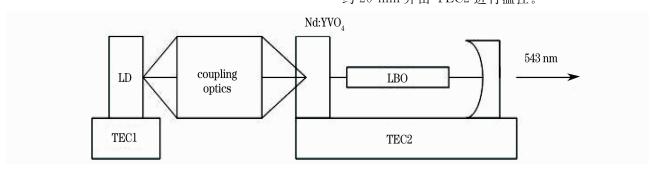


图 4 543 nm Nd: YVO4/LBO 激光器实验原理图

Fig. 4 Schematic diagram of 543 nm Nd: YVO_4/LBO laser

当抽运功率为 1.9 W 时,不放入和频晶体,仔细调节各个元件,可以观察到微弱的红外输出,仔细调节输出镜和耦合光学系统,使红外光斑成圆形且实心。在谐振腔内插入 I 类临界相位匹配切割的 LBO($\theta=90^\circ$, $\varphi=10^\circ$),LBO 的长度为 10 mm,为了降低 LBO 的插入损耗,两端都镀制基频光和倍频光的增透膜。仔细调节各个元件以及 LBO 的角度,获得了最大输出功率为 105 mW 的 543 nm 激光输出,其光-光转换效率高达 5.53%,输出功率稳定性优于 3%。图 5 为输出激光的光谱图,从光谱图可以看出获得了单一波长的 543 nm 激光输出,即实现了对 1064.3 nm 主要谱线的抑制。

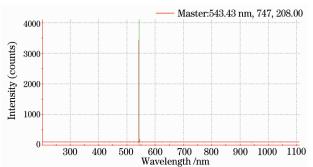


图 5 543 nm 激光光谱图

Fig. 5 Laser spectrum line of 543 nm green laser 图 6 为 543 nm 激光器的输出功率与注入抽运 功率的关系曲线。图 7 为 543 nm 激光的输出光斑

轮廓图,从图 7 可以看出,激光器输出为 TEM_{00} 模,用刀口法测量其 M^2 因子为 1.32。

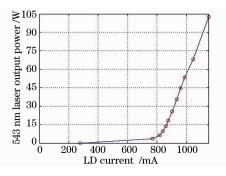


图 6 543 nm 激光器的输出功率与注入抽运功率的 关系曲线

Fig. 6 543 nm laser output as a function of incident pump power

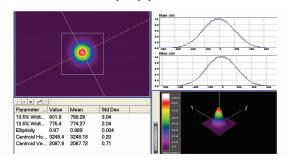


图 7 543 nm 激光光斑轮廓图

Fig. 7 Beam profile distribution of 543 nm green laser

4 结 论

报道了一种能获得 543 nm 激光连续输出的 LD 抽运全固态激光器,用 LD 抽运 Nd: YVO4 晶体,通过对谐振腔膜系的设计以及倍频晶体的合理 选择和放置,采用 I 类临界相位匹配 LBO 晶体进行

腔内倍频,采用简单直腔结构,获得了 543 nm 激光输出。在 1.9 W 的抽运功率下,最大输出功率为 105 mW。光-光转换效率高达 5.53%,输出功率稳定性优于 3%。

参考文献

- 1 R. Zhou, B. G. Zhang, X. Ding *et al.*. Continuous-wave operation at 1386 nm in a diode-end-pumped Nd: YVO₄ laser[J], *Opt. Expr.*, 2005, **13**(15): 5818~5824
- 2 Y. F. Chen , M. L. Ku, K. W. Su. High-power efficient tunable Nd: GdVO₄ laser at 1083 nm[J]. Opt. Lett., 2005, 30 (16): 2107~2109
- 3 Jia Fuqiang, Xue Qinghua, Zheng Quan. All-solid-state 556 nm yellow laser by LBO intracavity frequency doubling[J]. *Chinese J. Lasers*, 2005, **32**(8): 1017~1021
- 贾富强, 薛庆华, 郑 权. 全固态 LBO 腔内倍频 556 nm 黄光激光器[J]. 中国激光, 2005, **32**(8): 1017~1021
- 4 Feng Yan, Bi Yong, Zhang Hongbo. 20 W Nd: YAG all-solid-state green laser by extracavity frequency doubling [J]. *Acta Optica Sinica*, 2003, **23** (4): 469~471
 - 冯 衍,毕 勇,张鸿博. 20 W 腔外倍频全固态 Nd: YAG 绿光激光器[J]. 光学学报, 2003, **23** (4): 469~471
- 5 Dai Houmei, Bai Jintao. LD pumped Nd: YAG/KTP intracavity double frequency 16 W CW green laser[J]. Laser Technology, 2008, 32(3): 312~313
- 戴厚梅,白晋涛. LD 抽运 Nd: YAG/KTP 腔内倍频16 W 连续波绿光激光器[J]. 激光技术,2008, $\bf 32$ (3): $312\sim313$
- 6 P. Zeller, P. Peuser. Efficient, multiwatt, continuous-wave laser operation on the ${}^4F_{3/2} {}^-4I_{9/2}$ transitions of Nd: YVO₄ and Nd: YAG[J]. *Opt. Lett.*, 2000, **25**(1): $34 \sim 36$
- 7 Z. Zhang, H. M. Tan, L. L. Gao et al.. Intra-cavity second harmonic generation with Nd: YVO₄/BIBO laser at 542 nm[J]. Opt. Communi., 2006, 267; 487~490
- 8 Shi Zhaohui, Fan Zhongwei, Wang Peifeng *et al.*. High efficiency continuous-wave laser-diode-end-pumped vanadate laser operating on 914 nm [J]. *Chinese J. Lasers*, 2008, **35**(3): 328~332

石朝辉, 樊仲维, 王培峰 等. 高效率连续波运转的激光二极管端面抽运 $914 \text{ nm Nd: } YVO_4$ 激光器 [J]. 中国激光, 2008, 35(3): $328\sim332$