文章编号: 0258-7025(2009)03-0607-07

基于光学倍乘法产生光毫米波的全 双工毫米波光纤传输系统设计

李 晶^{1,2} 宁提纲^{1,2} 祁春慧^{1,2} 贾 楠^{1,2}

(¹北京交通大学光波技术研究所北京,100044;²北京交通大学全光网络与现代通信网教育部重点实验室,北京100044)

摘要 毫米波光纤(ROF)传输系统中当采用强度调制器直接调制毫米波信号时,随着传播距离的延长会产生信号 强度的周期性衰落问题,限制了毫米波通信技术的发展。光学倍乘法(OFM)将低频或中频调制信号搭载在扫频光 信号上,通过在基站生成毫米波的方法,有效缓解信号强度的周期性衰落,具有广阔的发展前景。提出并实验研究 了一种基于光学倍乘法产生光毫米波的全双工毫米波光纤传输系统。系统中利用光纤 Bragg 光栅提取光波作为 上行链路光载波,基站中不需配置光源,而且对光功率的损耗小,合理利用了资源。基站中还采用低频本振与毫米 波载波混频的方法实现上行链路本振,解决了上行链路本振的生成难题,方法简单,成本低廉,有利于简化基站,降低成本。

关键词 光通信;毫米波光纤;光学倍乘法;光纤光栅;本振 中图分类号 TN929.11 **文献标识码** A **doi**: 10.3788/CJL20093603.0607

Design of Bi-Directional Radio over Fiber Transmission System Based on Optical Frequency Multiplication

Li Jing^{1,2} Ning Tigang^{1,2} Qi Chunhui^{1,2} Jia Nan^{1,2}

⁽¹ Institute of Lightwave Technology, Beijing Jiaotong University, Beijing 100044, China
 ² Key Laboratory of All Optical Network & Advanced Telecommunication Network
 Ministry of Education, Beijing Jiaotong University, Beijing, 100044, China

Abstract Radio over fiber (ROF) systems which employ intensity modulation with direct modulator are faced with severe chromatic dispersion-induced fading of the remotely delivered RF signals, which limits the development of millimeter-wave communications technology. Optical frequency multiplication (OFM) carry low frequency or intermediate frequency modulated signals on optical signals. The base station generates millimeter-wave signals, which effectively combatted the problem of chromatic dispersion-induced fading. This method has broad development prospects. The design of a bi-directional radio over fiber transmission system based on OFM is proposed and experimental studied. In the system, a fiber Bragg grating is used to extract light wave as a light-uplink carrier. The base station needing no light source. The loss of optical power is low, the use of resources is rational. At the base stations, low-frequency oscillator and millimeter-wave carrier are mixed to gain the uplink oscillator, which solve the problem of uplink generation. This method simplifies the system and lowers the cost.

Key words optical communications; radio over fiber; optical frequency multiplication; fiber Bragg grating; oscillator

收稿日期: 2008-09-19; 收到修改稿日期: 2008-12-19

基金项目:国家自然科学基金(60771008)、北京市自然科学基金(4082024)、新世纪优秀人才支持计划(NCET-06-0076)、北京交通大学校科技基金(2006XM003)资助课题。

作者简介:李 晶(1984-),男,博士研究生,主要从事光纤传输毫米波光学生成方面的研究。 E-mail:ggyy1984714@163.com

导师简介: 宁提纲(1968-),男,博士生导师,主要从事光通信与移动通信、光纤传输、光纤通信、光纤激光器、全光网络及 其关键器件、光纤传感方面的研究。E-mail:tgning@bjtu.edu, cn(通信作者)

国 激

中

1 引 言

毫米波光纤(ROF)传输技术的关键技术之一 就是光学生成技术。目前国际上光学生成毫米波的 常见方法可以归纳成4类[1,2]:强度调制直接检波 法、光学外差检波法、基于谐波生成技术的方法和电 吸收调制法。不同的方法有着不同的应用场合,但 大部分方法都存在系统结构复杂、成本高昂的问题。 基于谐波生成技术的方法可以用低频微波结合光电 子技术产生毫米波,系统可相对精简。光学倍乘法 就是基于谐波生成技术而提出的[3,4]。光学倍乘法 通过在基站生成毫米波,有效解决了直接调制毫米 波传输时带来信号强度的周期性衰落问题,对光纤 色散具有很强的容忍度^[5~8]。ROF 技术最大的特 点在于将复杂昂贵的设备集中在中心站,有效地简 化了基站。目前有许多简化基站的方案提出,其中 就有 A. Kaszubowska 等提出的光波重用技术^[9],利 用光栅反射光载波进而应用到上行链路通信[10,11], 充分结合光载波的重用技术和光学倍乘法的优点。 本文提出并实验研究了一种基于光学倍乘法产生光 毫米波的全双工毫米波光纤传输系统。系统中利用 光栅的光载波重用技术和上行本振的生成技术,有 利于节约成本,简化基站。

2 系统原理及色散分析

光学倍乘法是一种通过对光波的处理,使低频 扫频信号(f_{sw})上变频到高频射频信号(f_{RF})的方 法,其结构见图1所示。扫频光信号通过铌酸锂相 位调制器对激光器输出光波进行相位调制,输出的 光信号通过光纤传送后经一个马赫-曾德尔干涉仪。 光电二极管输出的信号中含有扫频信号(f_{sw})的高 次谐波(f_{RF}),然后利用带通滤波器滤波后由天线发 射出去。

在图 1 的结构中(PM 为相位调制器, MZI 为马赫-曾德尔干涉仪, PD 为光电探测器, BPF 为带通滤波器),周期滤波器传输函数 $H_{MZI} = 1/2[\delta(t) - \delta(t-\tau)]^{[12]}$ 。不加入单模光纤,不考虑激光器的相位噪声时,光电二极管处的电流强度 i(t)可以表示为^[13]

$$i(t) = 1/2 | E_0|^2 \cdot \{1 + \cos[\omega_c \tau + \beta \cos(\omega_{sw} t)] - \beta \cos[\omega_{sw} (t - \tau)]\}, \qquad (1)$$

将(1)式用第一类贝塞耳函数(J_n)展开,经光电转换后的电流信号中包含有扫频信号的各种谐波分量 *n*•*f*_{sw},当加入一段长度为 *L* 的标准单模色散光 纤时,忽略光纤损耗。经光电转换后,电流信号 *i*_{out} 表达式为[14](不考虑激光器相位噪声和光纤损耗)

Fig. 1 Experimental setup of the ROF system based on OFM

$$i_{\text{out}}(t) = i_{\text{out},0}(t) + R_d | E_0 |^2 \sum_{n=1}^{\infty} \bullet \left\{ \sqrt{A_n^2 + B_n^2} \operatorname{sgn}(A_n) \cos \left[n \omega_{\text{sw}} \left(t - \beta_0' L - \frac{1}{2} \tau \right) + \frac{1}{2} \beta_0' L n^2 \omega_{\text{sw}}^2 - \arctan \frac{B_n}{A_n} \right] \right\}, \qquad (2)$$

其中直流成分表达式为

光

$$i_{\text{out},0}(t) = \frac{1}{2} R_{\text{d}} | E_0 |^2 \sum_{k=-\infty}^{\infty} J_k^2(\beta) \cdot [1 + (\omega_c + k\omega_{\text{sw}})\tau], \qquad (3)$$

当 $x \ge 0$ 时,符号函数 sgn(x) = 1;当 x < 0 时,符号 函数 sgn(x) = -1; A_n 和 B_n 表达式分别为

$$A_{n} = \sum_{k=-\infty}^{\infty} \left\{ J_{k}(\beta) J_{k-n}(\beta) \cos(\beta_{0}^{\prime} L \omega_{sw}^{2} nk) \cdot \left\{ \cos \left[(\omega_{c} + k \omega_{sw}) \tau - \frac{1}{2} n \omega_{sw} \tau \right] + \cos \left(\frac{1}{2} n \omega_{sw} \tau \right) \right\} \right\}, \qquad (4)$$

$$B_{n} = \sum_{k=-\infty}^{\infty} \left\{ J_{k}(\beta) J_{k-n}(\beta) \sin(\beta'_{0} L \omega_{sw}^{2} nk) \cdot \left\{ \cos \left[(\omega_{c} + k \omega_{sw}) \tau - \frac{1}{2} n \omega_{sw} \tau \right] + \cos \left(\frac{1}{2} n \omega_{sw} \tau \right) \right\} \right\},$$
(5)

(2)式输出 $i_{out}(t)$ 包含扫频信号的高次谐波 $n\omega_{sw}$,其 幅度 $\sqrt{A_n^2 + B_n^2}$ 受传输色散 β''_0L 的影响。

与单波长双边带调幅(AM-DSB)系统^[15]不同, 光学倍乘法系统光纤中传输的是中频和低频信号, 而 AM-DSB 系统光纤中传输的是高频毫米波信号。 图 2 为模拟 100 km 无损耗色散光纤情况下 AM-DSB 和 OFM ROF 系统中射频信号强度与光纤长 度的关系。可见随色散光纤长度的延长,AM-DSB 系统出现了强度周期性衰落问题,光学倍乘法系统 受色散影响小,对色散具有很高的容忍度,能够有效 抵抗由于使用光纤长度的增加而带来的强度周期性 衰落问题,而且光学倍乘法还可以应用于多模光纤 系统中。

图 2 AM-DSB 和 OFM 系统比较图

Fig. 2 Comparision of AM-DSB and OFM 基于光学倍乘法原理,设计的系统结构原理图 如图 3 所示(FBG 为光纤布拉格光栅,BPSK 为二进 制相移键控,IM为强度调制器,LO为本地振荡器)。 中心站主要由单纵模激光器、铌酸锂相位调制器、环 形器、光纤 Bragg 光栅、强度调制器及其上行链路信 号光接收、解调设备组成。基站由环形器、光纤 Bragg 光栅、马赫-曾德尔干涉仪、带通滤波器、低频本振、光 探测器和带通滤波器等组成。

中心站和基站均配置环形器和光纤 Bragg 光栅。 利用的选频反射特性将频率 f。的光波反射,使得中 心站输出的扫频光信号中包含未被调制的频率 f。光 载波。而基站则用来提取该光载波作为上行链路光 源,其他频率的光则通过光栅,经 Mach-Zehnder 干涉 仪实现倍频。

图 3 系统原理结构图

信号通过带通滤波器和放大器后被分为两路, 其中一路下行链路转发支路,获得携带调制信号的 已调波由天线发送出去。另一路是上行链路毫米波 本振提取支路,直接提取毫米波本振经转换生成上 行链路的参考本振,主要由低频本振和混频器完成。 利用该本振与天线收到的毫米波信号混频实现下变 频,经过下变频后的中频或低频信号再对光载波进 行强度调制,发射到中心站,实现上行链路。

系统中利用光纤光栅实现了光载波的重用,这种 方法能够很轻易地获得一个强度很大的光载波,有效 地利用了资源,合理简化了基站,有利于降低成本。

3 理论分析

按照图 3 的系统结构,基站光栅输出的下行解 调支路光信号可以表示为

 $E = E_{c} \sqrt{mg(t)} [1 - \delta(t)] \cdots [1 - \delta(t - k\pi/\omega_{sw})] \bullet$

 $\exp[j\phi_{c}(t)], k = 0, 1, 2...,$ (6) 其中 ω_{c} 为光源中心频率, $\phi_{c}(t)$ 为铌酸锂相位调制器 产生的光载波相位,g(t)为调制信号,m为强度调制 系数。当 $t = k\pi/\omega_{sw}, k = 0, 1, 2...$ 时,光信号强度为 零,此时光被光栅完全反射。可以推导出经过光纤 Bragg 光栅后,频率为 f_{c} 的光载波被反射,通过光 栅的光信号相位为

$$\phi_{c}(t) = \omega_{c}t + (\pi V_{sw}/V_{\pi})\cos\omega_{sw}t$$

$$t \neq k\pi/\omega_{sw}, \ k = 0.1.2\cdots,$$
(7)

其中 V_{sw} 为扫频信号幅度, V_{π} 为铌酸锂相位调制 器半波电压。假定光栅能够将光信号完全反射, 即当 $t = k\pi/\omega_{sw}$,k = 0, 1, 2…时光强度为零,此时的 光信号相位是没有意义的。根据 Mach-Zehnder 干 涉仪的响应函数 $h_{MZI}(t) = \frac{1}{2} [\delta(t) + \delta(t - \tau)]^{[8]}$, 忽略光纤对光信号造成的影响,干涉仪输出的光 信号为

$$E = E_{\rm c} \sqrt{mg(t)} \left\{ \left[1 - \delta(t) \right] \cdots \left[1 - \delta(t - k\pi/\omega_{\rm sw}) \right] \exp[j\phi_{\rm c}(t)] + \left[1 - \delta(t - \tau) \right] \cdots \left[1 - \delta(t - k\pi/\omega_{\rm sw} - \tau) \right] \exp[j\phi_{\rm c}(t - \tau)] \right\}.$$

k

(8)

$$= 0.1.2....$$

对于 g(t)来说 τ 非常小,近似 $g(t-\tau)$ 为 g(t)。光探测器输出的电流为

$$I_{d} \propto \begin{cases} E_{c}^{2} mg(t) \{1 + \cos[\phi_{c}(t) - \phi_{c}(t - \tau)]\} & t \neq \frac{k\pi}{\omega_{sw}} + \tau \coprod t \neq \frac{k\pi}{\omega_{sw}}, k = 0, 1, 2 \cdots \\ \frac{1}{2} E_{c}^{2} mg(t) & t = \frac{k\pi}{\omega_{sw}}, k = 0, 1, 2 \cdots \\ \frac{1}{2} E_{c}^{2} mg(t) & t - \tau = \frac{k\pi}{\omega_{sw}}, k = 0, 1, 2 \cdots \end{cases}$$
(9)

当 $t \neq k\pi/\omega_{sw}$ + τ 且 $t \neq k\pi/\omega_{sw}$,k=0,1,2…时,

$$I_{\rm d} \propto E_{\rm c}^2 mg(t) \left\{ 1 + \cos\left[\phi_{\rm c}(t) - \phi_{\rm c}(t-\tau)\right] \right\} = E_{\rm c}^2 mg(t) \left\{ 1 + \cos\left[\omega_{\rm c}\tau + \frac{\pi V_{\rm sw}}{V_{\pi}} \left[\cos\omega_{\rm sw}t - \cos\omega_{\rm sw}(t-\tau)\right] \right\} \right\},$$
(10)

将式(10)由贝塞耳函数展开

$$i_{d}(t) = i_{0} + i_{0}\cos(\omega_{c}\tau) J_{0}\left(\frac{2\pi V_{sw}}{V_{\pi}}\sin\frac{\omega_{sw}\tau}{2}\right) + 2i_{0}\cos(\omega_{c}\tau) \sum_{1}^{\infty} J_{2n}\left(\frac{2\pi V_{sw}}{V_{\pi}}\sin\frac{\omega_{sw}\tau}{2}\right) \cos 2n\omega_{sw}\left(t - \frac{\tau}{2}\right) + 2i_{0}\sin(\omega_{c}\tau) \sum_{1}^{\infty} J_{2n+1}\left(\frac{2\pi V_{sw}}{V_{\pi}}\sin\frac{\omega_{sw}\tau}{2}\right) \cos(2n+1)\omega_{sw}\left(t - \frac{\tau}{2}\right),$$
(11)

其中 $i_0 = E_c^2 mg(t), J_n(\beta)$ 为第一类贝塞耳函数。 设计毫米波 $f_{mm} = 2n f_{sw}$ 频率分量功率受 $\cos(\omega_c \tau)$ 和 $J_{2n}\left(\frac{2\pi V_{sw}}{V_{\pi}}\sin\frac{\omega_{sw}\tau}{2}\right)$ 的取值影响。对于不同的 n 值, 存在 β_{max} 使 $J_{2n}(\beta_{max})$ 取值最大, τ 的取值应满足 $\begin{cases} \omega_c \tau = m\pi \quad m = 0, 1, 2\cdots \\ 2(\pi V_{sw}/V_{\pi})\sin(\omega_{sw}\tau/2) = \beta_{max}, \end{cases}$ (12) 当 $t = k\pi/\omega_{sw}, k = 0, 1, 2\cdots$ 或 $t = k\pi/\omega_{sw} + \tau, k = 0, 1,$

2…时,光电流只有直流分量。知光栅提取光载波 后,对系统无影响,既不会影响到毫米波信号的提 取,也不会影响到信号的解调。

表1所示为滤波法提取光载波和光波重用提取 光载波两种方法的比较。最大的区别在于通过直接 滤波会导致光功率大量损失,浪费资源。而后者在于 对光功率损失很小,而且实现了资源的有效利用,使 得基站无需配置光源,从而大大节约了系统的成本。

表 1	两种方法提取光载波的比较	

Scheme	Scheme one	Scheme two
Principle	Reflect and reuse the optical carrier using an optical fiber Bragg grating The strong optical power is utilized with no need of laser in base station which reduces the cost effectively, and the loss introduced by FBG is low	Filter the optical carrier using an optical passband filter
Merit		There is no need of laser employed in the base station, which simplifies the system and lowers the cost of the system
Demerit	There is loss of optical power	The loss of the optical power is pretty high, and the utilization rate is low

Table 1 Comparision of two schemes to extract the light-wave

为了获得上行链路下变频本振,系统采用将毫 米波载波与低频本振混频的办法实现了毫米波载波 的频率变换,得到新的上行毫米波本振,与天线收到 毫米波信号混频实现下变频,解决了基站中提取毫 米波本振的问题。由于低频本振相对廉价,通过混 频的方法能够进一步简化基站,降低成本。

4 仿真实验

搭建的系统如图 1 所示。激光器工作中心波长 $\lambda_c = 1552.5 \text{ nm},$ 频率 $f_c = 193.1 \text{ THz},$ 谱宽10 MHz, 功率 10 mW。设置不同的系统参数如下:1) 扫频 频率 $f_{sw} = 3 \text{ GHz},$ 设计输出毫米波频率 $f_{mm} =$ 48 GHz,由理论分析设 Mach-Zehnder 干涉仪自由 频谱区 (FSR) = $1/\tau = 12$ GHz,由探测得频谱图 如图4(a),(b)所示;2)扫频频率 $f_{sw} = 5$ GHz,设计 输出毫米波频率 $f_{mm} = 60$ GHz, Mach-Zehnder 干 涉仪 FSR = $1/\tau = 20$ GHz,由探测得频谱图如图

4(c),(d)所示;3) 扫频频率 $f_{sw} = 4$ GHz,设计输出 毫米波频率 $f_{mm} = 64$ GHz,Mach-Zehnder 干涉仪 FSR= $1/\tau = 16$ GHz,由探测得频谱图如图 4(e), (f)所示。

图 4 光探测器输出频谱和导频信号

在三种不同方式下进行了仿真:1) 不提取光载 波,即正常情况;2)利用光栅提取光载波;3)直接 利用光滤波器滤出光载波。观察 PD 输出频谱图, 比较如图 5 所示。设计毫米波频率 64GHz, A 线所 示为不提取光载波时光信号强度-38.3 dBm,B线 所示利用光栅提取光载波光信号强度-39.1 dBm, C线所示直接利用光滤波器滤出光载波光信号强度 -41.8 dBm。可见采用光栅提取光载波对信号强度 影响很小。基站光纤光栅输出光信号频谱如图 6 所 示。图中频率 $f_{e} = 193.1$ THz 光载波被完全反射, 经环形器 3 端口输出,频谱如图 7 所示。其中 193.1 THz光载波强度为-10 dBm,将此光载波放 大后可作为上行链路光源使用。加 BPSK 调制,载 波频率 225 MHz, 基带信号速率 28 Mbit/s,则 64 GHz载频附近得频谱如图 8 所示。64 GHz 毫米 波载频,可直接提取用于上行本振生成,载频两边为 调制信号边带。设定上行信号频率 64.2 GHz,基站 低频本振频率 300 MHz。

解调后得到背靠背眼图如图 9 所示。基站采 用毫米波载频与本地低频本振混频的方法得到 上行链路本振的方法,通过仿真得以验证。图 10 所示为经过下变频后的上行信号频谱图,该上行 信号能够直接对光源进行调制,从而在不增加基 站成本的基础上实现了毫米波系统的上行链路 功能。

图 5 不同方式 64 GHz 信号强度比较

图 6 提取光载波后的频谱 Fig. 6 Spectrum of light-wave after extraction

光

中

图 10 经过下变频的上行信号

5 结 论

以上系统仿真与理论分析基本吻合,验证了本

文提出的双向系统的结构。本系统的核心之处在于 利用光纤光栅实现了光载波的重用,中心站利用光 栅使得输出扫频光信号中包含未经调制的光载频, 基站则利用光栅将该载频提取出来。这种方法的优 点在于:1)有效利用了资源,使基站无需配置激光 器,有利于降低基站成本;2)引入光纤光栅对系统 性能影响不大,通过理论分析和仿真得以验证。系 统在生成上行本振采用廉价低频本振与下行毫米波 载波混频的方法,得到上行链路本振,结构简单,而 且成本不高,有利于这项技术的进一步推广。

参考文献

- 1 A. Ng'oma. Design of a Radio-over-Fiber System for Wireless LANs[R]. Technische Universiteit Eindhoven,2002. $9\!\sim\!26$
- 2 Fang Zujie, Ye Qing, Liu Feng *et al.*. Progress of millimeter wave subcarrier optical fiber communication technologies [J]. *Chinese J. Lasers*, 2006, **33**(4):481~488 方祖捷,叶 青,刘 峰等. 毫米波副载波光纤通信技术的研究 进展[J]. 中国激光,2006,**33**(4):481~488
- 3 Ton Koonen, A. Ng'oma *et al.*. Carrying microwave signals in a GIPOF-based wireless LAN[C]. *in Proceedings of the Plastic Optical Fibres Conference*, 2001,217~223
- 4 Ton Koonen, Anthony Ng'oma, Henrie van den Boom et al.. Inhouse networks using ploymer optical fibre for broadband wireless applications[J]. Photonic Network Communication, 2003, 5(2): 177~187
- 5 M. G. Larrode, A. M. J. Koonen, J. J. V. Olmos, Dispersion tolerant radio-over-fiber transmission of 16 and 64-QAM radio signals at 40GHz[J]. *Electron. Lett.*, 2006, **42**(15): 872~874
- 6 A. Ng'oma, Rijckenberg. Building extended-reach radio-overfiber links by exploiting optical frequency multiplication's dispersion tolerance[C]. *Microwave Symposium*. 2007. *IEEE/ MTT-S International*, 2197~2200
- 7 T. Koonen, A. Ng'oma, M. Garcia Larrode et al.. Carrying microwave signals in a GIPOF-based wireless LAN [C]. in Proceeding of the Plastic Optical Fibers Conference, 2001, 217 ~223
- 8 Zhu Meiwei, Lin Rujian, Ye Jiajun *et al.*. Novel millimeter-wave radio-over-fiber system using dual-electrode Mach-Zehnder modulator for millimeter-wave generation [J]. *Opto-Electronic Engineering*, 2008, **35**(4): 126~130

朱美伟,林如俭,叶家骏等.使用双电极 Mach-Zehnder 调制器产 生毫米波的新型 mm-ROF 系统[J]. 光电工程,2008,35(4): 126~130

- 9 A. Kaszubowska, L. Hu, L. P. Barry. Remote down-conversion with wavelength reuse for the radio/fiber uplink connection[J]. *IEEE Photon.*, *Technol. Lett.*, 2006, **18**(4):562~564
- 10 Hu Liliang, Chen Lin, Yu Jianjun *et al.*. A novel scheme for optical millimeter-wave generation based on double-sideband modulation[J]. Acta Optica Sinica, 2008, 28(2): 238~242 胡黎亮,陈 林,余建军等.一种改进的双边带调制产生光毫米 波的方案[J]. 光学学报, 2008, 28(2): 238~242
- 11 Wen Hong, Chen Lin, Pi Yazhi et al.. Full-duplex radio-overfiber system with optical millimeter-wave generation utilizing optical phase modulator[J]. Chinese J. Lasers, 2007, 34(7): 935~939

文 鸿,陈 林,皮雅稚等.基于相位调制器产生光毫米波的全 双工光纤无线通信系统[J].中国激光,2007,34(7):935~939

12 A. M. J. Koonen, A. Ng'oma, M. Garica Larrode et al.. Novel

cost-efficient techniques for microwave signal delivery in fiber wireles networks [C]. in Proceedings of the ECOC'04,2004.5: $120 \sim 123$

- 13 A. M. J. Koonen, A. Ng'oma. Integrated Broadband Optical Fiber/Wirless LAN Access Networks, in Broadband Optical Access Networks and Fiber-to-the-Home: Systerm Technologies and Development Strategies[M]. New York: Wiley,2006
- 14 A. M. J. Koonen, M. Garcia Larrode, A. Ng'oma et al..

Reconfigurable fibre-wireless networks using dynamic wavelength routing[C]. *Proc. OECC*, 2006

15 Yang Xiangyun, Hu Weiwei, Xu Anshi. Research on effects of dispersion of signal transmission on millimeter-wave ROF optical communication systems [J]. Acta Scientiarum Naturalium Universitis Pekinensis, 2006,42(3):401~405 杨湘云,胡薇薇,徐安士. 毫米波 ROF 光通信系统中信号传输色 散影响的研究[J].北京大学学报,2006,42(3):401~405

《中国激光》"综述"栏目征稿启事

《中国激光》创刊 30 多年以来,以反映我国激光领域的研究进展和成果为己任,见证了中国激光领域的 发展历程和重大突破,在读者中树立了较高的学术地位,形成了较为成熟的办刊风格。近年来,激光研究的 领域取得了令人瞩目的成就,在我国科技体系与国民经济中占据了越来越重要的地位,为了给广大研究人员 提供更丰富、更全面的信息,应部分读者的要求,本刊增辟"综述"栏目,刊发综述类文章,反映激光领域热点 专题的研究进展或动态。

具体要求:综述应尽可能就激光领域的研究热点结合最新的研究成果进行论述,涉及范围不需太大,但 必须要有一定的深度和时间性,能反映出这一专题的历史背景、研究现状和发展趋势。执笔人(第一作者)应 是在激光及其相关领域具有一定造诣,对某一方面有较深入研究的专家、学者。文章必须有作者自己的研究 经验或体会,所介绍的工作应尽量适合国内已开展的工作或将要开展工作的需要。投稿同时,请作者提供详 细的作者简介(包括研究领域、主要研究成果等)。

综述的写作格式一般包括四部分,即引言、正文、结论、参考文献。

引言,要用简明扼要的文字说明写作的目的、必要性、有关概念的定义,综述的范围,阐述有关问题的现 状和动态,以及目前对主要问题争论的焦点等。引言一般以 200~300 字为宜,不宜超过 500 字。

正文,是综述的重点,应能较好地表达综合的内容。正文主要包括论据和论证两个部分,通过提出问题、 分析问题和解决问题,比较不同学者对同一问题的看法及其理论依据,进一步阐明问题的来龙去脉和作者自 己的见解。当然,作者也可从问题发生的历史背景、目前现状、发展方向等提出文献的不同观点。正文的重 要部分应包括作者自己的工作实践。正文部分可根据内容的多少分为若干个小标题分别论述。

结论,是对综述正文部分作扼要的总结,作者应对各种观点进行综合评价,提出自己的看法,指出存在的问题及今后发展的方向和展望。

参考文献,是综述的重要组成部分。一般参考文献的多少可体现作者阅读文献的广度和深度,应以最近 3~5年内的最新文献为主。

文章篇幅一般在1万字左右,一经录用,从速发表,稿酬从优。

投稿方式:网上投稿:www.opticsjournal.net 或 E-mail:zhgjg@mail.shcnc.ac.cn 咨询电话:021-69918427

《中国激光》编辑部