终。即。态1(基态)、态2(20m)、态8(2Path)、态射(集中辐射态)。"由于输

铜蒸气激光器的偏振问题

陈徐宗 梁培辉 雷建求 (中国科学院上海光机所, 201800)

提要:本文对铜蒸气激光的偏振模式进行了理论和实验研究。探讨了偏振型脉冲光的特性,结 果表明:脉冲光的平均偏振度在一定的功率范围内随输出功率增大而下降,随腔长缩短而增大;随损 耗比 M 增大而增大。实验验证了上述结果,并得到平均偏振度为 97.6% 的激光输出。 关键词:铜蒸气激光器,平均偏振度,损耗比

Study on the polarization of copper vapor lasers

Chen Xuzong, Liang Peihui, Lei Jianqiu

(Shanghai Institute of Optics and Fine Mechanics, Acadamia Sinica, Shanghai)

Abstract: Theoretical and experimental study on the polarization modes are performed on copper vapour lasers. The properties of polarized pulsed light are explored and the results show that the average polarizability of pulsed light is decreased with the increase of output power within a certain power range, whereas it is increased with the shortening of the cavity length, and increased with the increase loss ratio M. These results are verified experimentally, and an average polarizability of 97.6% has been obtained for the laser output.

Key words: copper vapour laser, average polarizability, loss ratio

在某些特殊工作场合(如激光加工¹¹⁾、泵浦偏振的染料激光,非线性光学研究)只要线偏振光; 而铜蒸气激光脉宽大约为 20 ns, 其激光脉冲在腔内运行的次数很少,仅将输出窗口改制成布儒斯特窗,仍得不到高偏振度的激光输出。因此,研究如何实现铜蒸气激光器的高偏振度激光输出有其重要意义。

本文将脉冲激光偏振运行的物理模型简化成四能级双模速率方程组,并通过其数值解分析了在腔内插入起偏器后,激光输出的偏振度和时间、功率、腔内损耗、腔长等因素的关系。同时实验研究了上述偏振特性,并获得了平均偏振度为 97.6% 的激光输出。

一、速率方程分析

激光腔中插入m片以布儒斯特角放置的平板玻璃 BG 作为起偏元件。这样,一束从 M_1 出发的自然光经 M_2 反射回到 M_1 时将变成部分偏振光。 设振动方向平行入射面的光强为 I^+ ,振动方向垂直入射面的光强为 I^- ,其总光强为 I_{\circ} 设泵浦速率函数为 $W(t)_{\circ}$ 。本文只讨论铜激活介质中 ${}^{2}P_{3/2} \rightarrow {}^{2}D_{5/2}$ 的能级跃迁,跃迁中心频率为 510.6 nm。参照文献[2],将激活介质等

粒子数刚开始反转时, n>0, 但 do⁺/dd<0 及 do / dd<0, 公时, 日 35 月4 辛 9891; 胰日筋如

2

3

Pie

1

5

1

效成一个四能级系统,即:态1(基态)、态2(²D_{5/2})、态3(²P_{3/2})、态4(集中辐射态)。由于输出光由 I⁺、I⁻二部分组成,即可将实际过程等效成双模激光运行过程。将列出的双模运行情况下各能级的速率方程^[3,4]作一定的简化,可得如下方程组:

$$dn/dt = -[\sigma c(\rho^{+} + \rho^{-})]n - n/\tau + (n_0 - n)W(t)$$
⁽¹⁾

$$d\rho^+/dt = [\sigma cn(l/L) - \gamma^+]\rho^+$$
(2)

$$d\rho^{-}/dt = [\sigma cn(l/L) - \gamma^{-}]\rho^{-}$$
(3)

这里 $n=n({}^{2}P_{3/2})-n^{2}(D_{5/2})$ 为反转粒子数密度, n_{0} 为总粒子数密度, c 为光速, ρ^{+}, ρ^{-} 为二 种振动方向相互垂直的光子数密度, σ 为激发截面, π 为上能级等效寿命, l 为激活介质长度, L 为腔长, γ^{+}, γ^{-} 分别为 ρ^{+} 和 ρ^{-} 在光腔中的损耗系数。

激光腔内产生损耗的因素很多,本文主要考虑几何偏折损耗 δ₁、腔镜侧斜损耗 δ₂ 以及插 入损耗 δ₃。设 *M*₁ 的反射率为 *R*,起偏玻璃 BG 对 *I*⁻ 光的透射率为 *T*_s,在腔内插入 *m* 片 BG 的条件下,*I*⁺、*I*⁻ 在光腔中来回一次后,将分别为

$$I^{+\prime} = \operatorname{Re}^{-(\delta_1 + \delta_2 + \delta_3)} I^+ \tag{4}$$

$$I^{-\prime} = \mathrm{RT}_{s}^{2m} \mathrm{e}^{-(\delta_{1}+\delta_{2}+\iota_{3})} I^{-}$$

$$\tag{5}$$

其中几何偏折损耗和腔镜倾斜损耗分别为^[5]

$$\delta_1 = L \delta_0 / d \tag{6}$$

$$\delta_2 = 2 \sqrt{2\alpha L/d} \tag{7}$$

这里 θ_0 为激光的发散角; d为光束直径; α 为腔镜倾斜角, 由谐振腔腔片的调节精度 Δx 决定: $\alpha = \Delta x/2d$ (8)

为了将(4)、(5)二式全部用指数形式表示,令

$$I^{+\prime} = e^{-\frac{2L}{c}\gamma^{+}}I^{+}$$
(9)

$$I^{-\prime} = e^{-\frac{2L}{c}\gamma^{-}} I^{-}$$

$$\tag{10}$$

则

$$\gamma^{+} = \frac{c}{2L} \left(\delta_1 + \delta_2 + \delta_3 - \ln R \right) \tag{11}$$

$$\gamma^{-} = \frac{c}{2L} \left(\delta_1 + \delta_2 + \delta_3 - \ln R - 2m \ln T_s \right) \tag{12}$$

若一片 BG 的损耗和透射损耗之比为 θ ,则

 $\delta_3 = -m\theta \ln R \tag{13}$

由于 $\ln R < 0$, $\ln T_s < 0$, 显然 $\gamma^- > \gamma^+$ 。 令

- $t_c = -2L/c\ln R \tag{14}$
- $n_t = 1/\sigma c t_c \tag{15}$
- $n_t^+ = (L/\sigma cl)\gamma^+ \tag{16}$
- $n_t = (L/\sigma cl)\gamma^- \tag{17}$

$$M = \gamma^{-} / \gamma^{+} \tag{18}$$

其中 ni、nī 分别为对应于 I⁺、I⁻ 的反转粒子数阈值。 M 为损耗比,它在激光运行中作用很大,直接影响到光强大小、偏振度等。

粒子数刚开始反转时, n>0, 但 $d\rho^+/dt < 0$ 及 $d\rho^-/dt < 0$,这时没有激光输出,当 n 分别超过

44

December, 1990

國值 n_t^+ 、 n_t^- 时 $d\rho^+/dt$ 和 $d\rho^-/dt$ 也分别大于零,这时才有激光输出。当 ρ^+ 、 ρ^- 增大到一定数值, n 开始下降(即 dn/dt < 0),但此时 ρ^+ 、 ρ^- 仍在增大。当 n 降至 n_t^- 和 n_t^+ 时, ρ^- 和 ρ^+ 分别到达 峰值并开始下降。由此可见: n_t^+ 、 n_t^- 分别决定了 I^+ 和 I^- 出激光的时刻和光强的峰值时刻。

方程(1)~(3)为非线性方程组,一般无解析解。我们采用龙格-库塔法则解出其数值解。由 于实际激光过程中的泵浦函数随时间增长到一定程度后就衰减,假设泵浦函数是高斯型的,即

$$W(t) = W_{0}e^{-\left(\frac{t-t_{0}}{T_{1}}\right)^{2}\ln 2}$$
(19)

式中 W_0 为最大激发速率, T_1 为泵浦时宽, t_0 为泵浦峰值时刻。为了和实验相比较,在计算中取如下参量: $\sigma = 4.2 \times 10^{-14}$ cm², R = 0.09, $T_s = 0.699$, $\theta = 0.013$, $n_0 = 1500 n_{\pi}$, $\tau = 10 t_c$, $T_1 = 2 t_c$, L = 300 cm, l = 100 cm, d = 2.5 cm, $\theta_0 = 4 \times 10^{-3}$ rad, 泵浦重复率 $\nu = 6$ kHz

以下分别介绍数值解的结果并逐一加以讨论。

1.1 光强、偏振度和时间的关系

比较图 1(c)中 I_A 和 P_A 可见, 在总光强 I_A 的前沿偏振度低, 其后沿偏振度高。其物理原 因是:前沿光强经过起偏玻璃的次数少, 后沿光强经过起偏玻璃的次数多。 另外比较 P_A、 P_B 又可以发现: P_B 随时间的增长率要比 P_A来得快。 原因很明显, 也是由于前者光束通过起偏 玻璃 BG 次数多所引起的。

由于偏振度和光强都随时间而变,因而用求平均值的方法对其进行最终评估,即

$$\overline{P} = \int_{0}^{T} PI \, dt \, \bigg/ \int_{0}^{T} I \, dt \tag{20}$$

$$\overline{P} = \int_{0}^{T} PI \, dt \, \bigg/ \int_{0}^{T} I \, dt \tag{20}$$

$$\overline{I} = \frac{1}{T} \int_0^t I \, dt \tag{21}$$

其中T为泵浦重复周期。

图1 (a) m=1 时偏振脉冲光强随时间的演化; (b) m=2 时偏振脉冲光强随时间的演化。 P₄—图(a)中光脉冲的偏振度随时间的演化; P_B—图(b)中光脉冲的偏振度随时间的演化; I₄—图(a)中光脉冲所合成的总光强随时间的演化

为了和实验比较,定义平均输出功率 \overline{I}_{T} 为 $\overline{I}_{r}=JS\overline{I}$

其中J为M1的透射率,S为激光束截面面积。

在图 1(c)中,如将光强 I₄的脉冲峰值前移 4t,且脉宽保持不变、则其平均偏振度 P 将 下降。

(22)

1.2 光强峰值位置和平均偏振度及平均输出功率的关系

从图 1(a)、(b)可以看到: I⁻ 的峰值时刻 t₂ 在 I⁺ 的峰值时刻 t₂之前。其原因可以通过比 较方程(2)、(3)二式右边括号中的值而得到解释。由于激光脉冲产生后,反转粒子数 n 将下 降,这时由于(2)、(3)二式右边都大于零,故 I⁻ 和 I⁺ 都呈上升势趋。当满足条件 n=n_t⁻ 时, I⁻ 到达峰值,接着就开始下降。而这时(2)式右边仍大于零,故 I⁺ 还在上升,直至 Y 下降到满 足条件 n=n_t⁺ 时, I⁺ 才达到峰值。因此 t₂ 超前于 t₁。再由于

 $M=1-2m\ln T_{s}/(\delta_{1}+\delta_{2}+\delta_{3}-\ln R)$

因此 m 越大, 峰值时间差 $\Delta t_p = t_2 - t_1$ 也就越大。由以下分析可知, 平均偏振度也随之增大。反之, 当平均偏振度增大时, I⁻和 I⁺ 二峰值时间差 Δt_p 也将增大。因此 Δt_p 的大小可作为平均

偏振度大小的判据之一。

另外, 当输出功率 \overline{I}_{T} 增大时, 平均光强也随之增 大, 光强脉冲峰值将前移。比较图 2 和图1(a)可看到. 图 2 中的 I^+ 、 I^- 的峰值时刻分别超前于图 1(a) 中的 I_{4} 、 I_{4} 的峰值时刻。原因为: 其一, 当输出功率 \overline{I}_{T} 增 大, 导致 I 很快增大, 达到阈值 n_{t}^{*} 、 n_{t}^{-} 的时刻提前。比 较图 2 和图 1(b) 就可明显看出这一点; 其二, 当输出 功率 \overline{I}_{T} 增大, 则($I^{+}+I^{-}$)也增大, 由(1)式可知, 反转 粒子数 n 下降要加快。 这样 n 到达 t_{2} 和 t_{4} 的时间 都 要缩短。

1.3 平均偏振度和平均输出功率的关系

从图 3(a) 可以看到: 当平均输出功率(\overline{I}_{x})增大时, 开始时平均偏振度(\overline{P})将有明显下降, 当 \overline{I}_{x} 增大到一定数值以后, \overline{P} 又稍有回升, 其原因是: 开始时, 由于 \overline{I}_{x} 增大, 其对应的脉冲 峰值位置有明显的前移, 这时脉宽基本不变, 引起平均偏振度 \overline{P} 的明显下降。当 I_{x} 增大到一 定程度后, 脉宽变宽, 特别是其后沿有明显加宽, 这样其平均偏振度 \overline{P} 又稍有增大。

1.4 平均偏振度和腔长的关系

(a)

 $\bar{I}_{T}(W)$

(b)

1

L(m)

图 3(b)是在外界泵浦功率一定的条件下,平均偏振度 P 和腔长 L 的关系。从图可见:平

(a) 平均偏振度和平均输出功率的关系; (b) 平均偏振度和腔长的关系

(23)

3

2

T

2.

10

B

1

均偏振度 P 随着腔长 L 的增大而减少。 其原因是当 L 增加时,光在光腔内来回运行一次的 时间 2L/c 也增加。 这使得光束穿过起偏玻璃的次数减少,因此导致偏振度 P 下降。 另外当 插入偏振片数加增加时, \overline{P} 随腔长 L 增大而减少的趋势变得缓慢。 比较 m=2 和 m=8 的二 条曲线明显可以看出这一点。

1.5 平均偏振度、平均输出功率和损耗比的 关系

图 4 是在泵浦功率一定的条件下所得到的结 果。从图中可见: 当损耗比 M 增大时, 对应的平 均偏振度 P 也增大。 原因是因为 M 增大, I*相 0.4 对 I- 的竞争优势也增加。 因此偏振度就必然 提 高。图4中虑线表示的是:一定的插入玻璃片数 m所对应的损耗比 M 和偏振度 \overline{P} 的关系。显然。 插入玻璃片数 m 越多、对应的偏振度 P 就越大。

另外从图 4 还可看到: 如考虑插入损耗, 当 M 增大, 平均输出功率 In, 将下降。 这是由于损 耗比增大、I+、I-所对应的损耗也增大,因此输出

功率 \overline{I}_{T} , 將下降。如不考虑插入损耗(即 $\theta=0$), 当 M 增大, 平均输出功率 \overline{I}_{T} , 下降、到一定 值以后又回升, 最终趋于小于初始值 Ir.(这时对应输出为自然光)的数值 Irio 这里输出功 率出现最小值的原因是: I+和 I-中只有 I-有损耗存在。当 M 较小时, I+和 I-竞争不充 \mathcal{H}, I^- 占总光强的比例较大, M的存在使 I^- 的绝对值有明显的下降, 因此导致 \overline{I}_r 的下降。当 M较大时, I^- 占总光强的比例很小,M的存在虽使 I^- 的相对值有较大的下降,但其对应的绝对 值下降的数量占总光强的比例极少,因此 I_{T_s} 又缓慢上升,最终趋于 $\overline{I}_{T_f}(<\overline{I}_{T_s})$ 。因此,当插 入损耗很小时,在泵浦功率不变、输出功率基本不变的情况下,可将本来是自然光输出转化成 线偏振光输出,这在实际应用中是非常有价值的。

实验结果和分析

图 5 是实验装置示意图。采用自加热式铜蒸气激光器,其放电重复率为 6 kHz,放电管内 径为 2.5 cm, 稳腔长为 300 cm。

2.1 测量脉冲光强及其偏振度和时间的关系

在实验中让激光束通过小孔 B,再让其通过洛匈棱镜 C,将 I+和 I-分开并射入二只硅光 DE

电二极管 D。最后将信号输入双线示波器 E。 由此测得图 6、7(a)结果。比较图 7(a) 和图 1(c)可以看到理论和实验结果基本相符。

2.2 测量平均偏振度和输出功率的关 输出功率,又可把宣平 系

实验中让激光束直接通过 洛 匈 棱 镜 c. 将 I^+ 和 I^- 分开。 后加一 f = 50 cm 的正透

17 卷

10

190

3

(a) 偏振度随时间演化的实验结果, P_A、 P_B分别为图 6(a)、(b)所对应的偏振度随时间的演化;
 (b) 平均偏振度随输出功率变化的实验结果

镜,把硅光电二极管 D 换成 SD2490 型激光功率计探头。旋转洛匈棱镜 o,分别测得 \overline{I}_{T} 和 \overline{I}_{T} ,拿去洛匈棱镜 B 可测得平均输出功率 \overline{I}_{T} ,从而得到了图 7(b)的结果。比较图 7(b)和图 3(a),我们可以看到实验结果和理论计算结果基本相符,只是实验结果中的偏振度要略低于理 论值、这主要是由于铜蒸气激光的放大自发辐射(ASE)所引起的。

2.3 测量平均偏振度和腔长的关系

实验是在上一部分的基础上,改变 M_1 和 M_2 的距离,测出图 8(a)的结果。比较图 8(a) 和图 3(b)可知,两图中的 \overline{P} 的变化趋势是一致的。另外还测量了不同腔长时的输出功率 \overline{I}_{T} 。从 图 8(a)中可以看到:随着腔长的缩短,输出功率 \overline{I}_{T} 和平均偏振度 \overline{P} 都有所增加,当腔长为 2.5m, m=8时,获得了输出功率为 4W.平均偏振度为 95.6%的激光输出。从实验结果可知: 缩短腔长,既可提高输出功率,又可提高平均偏振度。因此它是一种很有效的方法。

2.4 测量平均偏振度、平均输出功率和插入起偏玻璃的关系

此实验也是在第二部分的基础上做的。让腔长为 300 cm, 改变 m, 测得图 8(b)的结果。比

(a) 平均偏振度随腔长变化的实验结果;(b) 平均偏振度和平均输出 功率随插入起偏玻璃数 m变化的实验结果

较图 8(b)和图 4,可以看出二者的结果基本一致。在实验中,当 m=8 时,获得了输出功率为 2.33 W,平均偏振度为 97.6%的激光输出。实验结果表明,增加起偏玻璃数 m,亦即增大损 耗比 M,是一个有效的提高输出激光偏振度的方法。

参考文献

and a computer, providing with antijamu

1 R. J. Drake, Laser Focus, 5, 120 (1988)

- 2 M. J. Kushner, IEEE J. Quant. Electr., QE-17(8), 1555(1981)
- 3 H, Haken, Laser Theory, Springer Verlag., Berlin Hideberg, New York, 1983, p. 115~142

4 Murray Sargent et al., Laser Physics, Addison-Wesley., London, 1974, p. 249~271

5 任虹,梁培辉 et al., 中国激光 16(3), 164(1989)

图 3 烧砂熔改理机

图 3 右边四个环为本激光器 6 kW 下连续出光 75 min 的激光烧砂熔斑,每 20 min 烧一 个,四个环都是相当理想的圆环。而左边那个为采用纵向耦合输出光路和气动窗口的激光器 的烧砂熔斑,为一功率密度不均匀的椭圆。相比之下,采用横向耦合输出光路和小孔径气动窗 口的本激光器输出激光的模式和近场图样要好得多。

本激光器气动窗口工作气体消耗率小于 0.1 mPa 下 71/min。一次充气,在上述低的换 气率下能连续稳定运行。耗气量比国外同类型激光器大为降低。

参考文献

1 Ethan Hoag et al., Appl. Opt., 13(8), 1959(1974)

2 Ethan Hoag et al., US PAT, 3-851-273(1974)