4国海光

第16卷 第3期

用稳光程干涉仪拍频检测小位移

汤俊雄 李爱国 (北京大学无线电系)

Measurement of small displacement by an interferometer of stable optical path difference and hetrodyne detection

Tang Junxiong, Li Aiguo

(Department of Radio and Electronics, Beijing University, Beijing)

提要:本文报告了一个检测低频小位移的方案,以塞曼双频激光器为光源,用迈 克尔逊干涉仪进行检测。为克服低频噪声影响,采用伺服环路锁定干涉仪光程差,且 用拍频技术检测信号,对于3.3kHz的信号,检测最小位移达0.005nm。

关键词: 拍频,稳光程

一、引言

检测微小振动位移一般采用光学零拍和 光学拍频检测法。用迈克尔逊干涉仪实现零 拍检测时,采用的是单频激光器,两臂光束具 有相同频率。一面镜子被电信号驱动,其小 位移信息通过检测干涉光强而获得,但低频 噪声使低频小位移的检测较为困难。拍频检 测法采用双频激光器,双频激光产生拍频信 号,有意义的小位移信息被载(拍)频移到较 高的频率范围内处理。这种拍频检测技术避 开了某些低频噪声源的干扰,因而优于零拍 检测法。文献[1]使用拍频检测技术,对频率 为2kHz的正弦信号进行了小位移检测,其 检测分辨率达到了012nm。

环境噪声是诸多噪声中的主要因素,实 验中观测到,由于环境噪声的干扰,干涉仪程 长的抖动达几nm,这无疑会妨碍微小位移信 号的检测。为此采用了伺服回路锁定干涉仪 程长,大大提高了其稳定度,并能有效地选择 工作点,从而使检测数据的准确度大为提高。 本方案把稳光程技术和拍频检测结合起来, 使检测分辨率得到较大提高。

二、实验原理与特点

2.1. 实验装置与工作原理

用纵向塞曼激光器作光源,其左、右旋圆 偏振光通过偏振片后能方便地产生拍频信 号。实验布局如图1所示。激光束到达分束 器 M 时,光场具有下面的形式:

 $U(t) \propto (e^{j2\pi f_1 t} + e^{i2\pi f_2 t})$

式中 f_1 、 f_2 分别为双频激光束的频率。 经过 M 分束及 M_1 , M_2 反射镜后, U(t)分解为 $U_1(t)$, $U_2(t)$, $U_1(t) = A_{10}e^{i\phi_1}U(t)$

收稿日期:1987年10月5日。

[•] 属国家自然科学基金资助项目。

图1 小位移检测实验布局

 1—压电陶瓷 2—镜片 3—高压源 4—信号发生器
 5—分束器 6—偏振片 7—塞曼激光器 8—锁相放 大器 9—示波器 10—光接收器 11—低通滤波器
 12—工作点监测 13—差分放大器 14—参考电平 15—带阻滤波器 16—积分器 17—高压放大器

$\overline{U}_{2}(t) = A_{20} e^{i\phi_{2}} \overline{U}(t)_{0}$

 ϕ_1, ϕ_2 分别是经过镜子反射后所引起的位相 变化。双光束干涉,探测器接收干涉光强 $I(t) \propto |U_1(t) + U_2(t)|^2$ 。有:

$$I(t) = I_0 [1 + \gamma \cos(\phi_1 - \phi_2)] + I_0 [1 + \gamma \cos(\phi_1 - \phi_2)] \cos 2\pi f_0 t$$
(1)

式中γ为相干迭加两光束振幅不等所引起的 反衬度因子; fo= |f1-f2|,为双频激光束的差 频,即拍频频率。(1)式中第一项为零拍项, 等效于同频激光束的干涉项; 第二项是不同 频率激光束的拍频项。可以看出,拍频项的振 輻和零拍项振幅相同。它与干涉仪两臂的相 位差 $(\phi_1 - \phi_2)$ 有关,即包含着对镜子加调制 后的小位移信息。利用它可得到小位移检测 结果。为了避开低频噪声的影响,在检测位 移信息时不采用(1)式中的第一项,而采用第 二项。用锁相放大器振幅解调技术取出第二 项的振幅值,获得小位移信息,这就是拍频检 测法。另外,为了稳定干涉仪程长,我们从光 强信号里用低通滤波器检测出(1)式第一项, 利用它锁定干涉仪程长。这样有利于抑制环 境噪声、避开低频噪声源,提高检测分辨率。

2.2 锁定干涉仪程长与选择工作点

和激光外腔稳频技术¹²³不同,我们把干 步光强-光程差曲线作为鉴别程长曲线,把干 涉仪光程差锁在干涉曲线一侧之中点(工作 点),干涉仪光程差偏离锁定点会产生误差信 号,通过伺服环路中的压电陶瓷调节镜片位 置,使光程差值复原,压电陶瓷镜片起调程长 作用。

图 2 示出干涉光强随光程差的小振动而 变化的情况,图中 Q 为工作点。由于 Q 选在 干涉强度曲线一侧之中点,即斜率最大处,变 化光程差可得到最大的光强信号。

图2 干涉仪光程差在工作点 Q 的小振动

为保证干涉仪程差在Q点小振动完全 由调制信号决定,在伺服环路里设置了以调 制信号频率fm为中心带的阻滤波器,使伺服 环路在调制信号fm处没有环路增益,失去伺 服作用,而对其它频率则有负反馈抑制功能。

2.3. 小位移(小振动振幅)定标

设 $\phi_1 - \phi_2 = \phi_0 + \phi_m$,式中 ϕ_0 是两臂初 始位相差, ϕ_m 是加调制信号所引起的相位 差。且有

 $\phi_0 = 2n\pi \pm \frac{\pi}{2}$ (n=0, ±1, ±2, …) (2) 设镜子位移 $x(t) = x_0 \sin 2\pi f_m t$, 这样

$$\phi_m = \frac{2\pi}{\lambda} 2x(t) = \frac{4\pi}{\lambda} x_0 \sin 2\pi f_m t, \quad (3)$$

将 φ₁-φ₂ 值代入光强公式(1),并利用 x₀≪ λ,得到了光电接收器之输出电压;

$$V(t) = V_0 \Big[1 + \frac{4\pi}{\lambda} \gamma x_0 \sin 2\pi f_m t \Big] + V_0 \Big[1 + \frac{4\pi}{\lambda} \gamma x_0 \sin 2\pi f_m t \Big]$$

$$\times \cos 2\pi f_0 t \qquad (4)$$

式中 Vo为工作点直流电平,其拍频项包含 要检测的小位移信息。 经锁相放大器振

· 157 ·

幅解调后可得到以 f_m 为频率的正弦信号 $\left(K \cdot \frac{4\pi}{\lambda} V_0 \gamma x_0 \sin 2\pi f_m t\right)$,其中K是锁相放 大器使用的增益。设上述信号的振幅 $\left(K \frac{4\pi}{\lambda} V_0 \gamma x_0\right)$ 的可分辨极限值为 V_{\min} ,则有

$$x_{0\min} = \frac{\lambda V_{\min}}{4\pi V_0 \gamma K}$$
 (5)

由(5)即可标定小位移检测极限。

三、实验结果

图1中,高压源和调制信号 fm 加在镜片 M1的压电陶瓷上,高压偏压用来调整工作 点。镜片 M2的压电陶瓷是调程长元件。锁相 放大器的参考信号是拍频信号 foo。实验表明, 干涉仪程长锁定后,光程的低频抖动减少了 10⁻³ 量级,如无特大震动,工作点可长期保持 不变。

图 3 示波器照片 上面的波形是加在检测镜 M₁的驱动信号,相应 的下面波形是锁相放大器的输出信号(图(a) 500mV/div,图(b)、(c)50mV/div)

本实验所用调制信号 fm=3.3kHz,图 3中(a)和(b)、(c)分别为伺服回路开环和闭 环时的检测结果,照片(c)为驱动信号较大时 的情况,照片(b)为电信号减小到一定程度时 的情形。照片(b)中锁相放大器的输出波形曲 线变粗,说明其中已有明显的噪声成分。若 再减小驱动信号,可以看到锁相放大器输出 信号中噪声成分显著增加,波形畸变,最后信 号完全被噪声淹没。所以照片(b)是接近极限 检测的情况。可以认为锁相放大器输出波形的振幅可分辨极限值 $V_{min}=10 \text{ mV}$,其它实验数据为: $\lambda = 632.8 \text{ nm}$, $V_0 = 0.75 \text{ V}$, $\gamma = 0.99$,K = 140。利用公式(5)得到:

$$v_{0\min} = \frac{\lambda V_{\min}}{4\pi V_0 \gamma K} = 0.005 \,\mathrm{nm},$$

而在伺服回路开环时,由(a)图可判断 Vmin 为 200mV,检测最小振幅值为0.1nm,由此可 见采取稳光程措施后明显地提高了检测分 辨率。

四、讨论

4.1 关于噪声抑制问题

小位移检测的分辨率取决于对噪声的抑制程度,噪声中主要成分是环境噪声(空气流、声波、机械振动等引起光程差无规抖动),除此之外,尚有激光源的噪声(功率及频率的抖动)、光探测器电子线路的噪声及散粒噪声等。本实验使用的稳频激光器短期频率稳定度为10⁻¹¹量级,对实验精度的影响可忽略,且在目前检测精度下,实验中未发现激光功率抖动的影响。因此抑制噪声主要针对环境噪声及光探测器电路噪声。

有的文献认为,采用拍频检测技术避开 了低频噪声源(包括低频的 1/f 噪声和环境 噪声)。实际上环境低频噪声源的干扰使干 涉仪光程差无规抖动,这种无规抖动和有规 的调制信号作用一起都被拍频信号载上了, 因此要检测的低频信号和环境噪声混在一 起,所以拍频技术对噪声的隔离作用并非对 所有的低频噪声源有效,应该说主要是避开 了光探测器的低频噪声。本实验的载频 fo= 200kHz,低频 kHz的位移信号被载频移到较 高频段处理,对克服光探测器低频噪声无疑 会有好处。因此为克服环境噪声,本方案采用 了稳定光程技术,拍频检测和稳光程两者结 合起来,起到了更好的抑制噪声作用。

(下转第169页)

三、实验结果

我们采用一3×3×50mm³的CdTe电光晶体 在一放电长度为 60 cm 的外腔式 CO2 激光器上进行 了外腔耦合电光调制实验,对以上分析进行了实验 验证。实验装置如图3所示。分束片 \$1、合束片 \$3, 及布氏窗片 \$2 均为 ZnSe 片。 R1 和 R2 为镀金全反 射平面镜。电光晶体驱动电源为一2W的高频功率 信号源,有时也采用50Hz市电低频交流信号。光 电探测器为一响应频率>200 MHz的HgCdTe探 测器。解调信号经一带宽>300 MHz 的低噪声放大 器(增益约50dB)放大后,显示在一台100MHz示 波器上,为了实现外差探测,从激光器输出的光束在 21 被分为两束,本振光经过一可移开的挡光板后在3 与被调制信号光合为一束。经细致调整两束光的平 行度并使之完全重叠入射到探测器上,则可得到外 差探测。当挡光板挡住本振光而只有信号光入射到 探测器上时,则得到直接探测。对于比较加不同直 流偏压时,外差和直接探测的解调波形非常方便。

图 4 中给出了几张实验拍摄的外腔电光调制的 典型解调波形。输入调制信号峰值 100 V。在零直

(上接第158页)

4.2. 测量精度分析

由于激光束的反馈会使稳频塞曼激光器 工作不正常,甚至失锁。为避免发生这种情况,在干涉仪光路调节时,有意使入射激光束 稍稍偏离正入射方向(相对反射镜片)θ角 度,我们将讨论这种偏离带来的影响,同时也 讨论一下工作点抖动引起的误差。

设偏离正入射方向为 θ 角,(3)式应改 为: $\phi_m = \frac{2\pi}{\lambda} 2\cos\theta x(t)$ 。

若工作点抖动引起相位偏差为 4年, (2)式应

流偏压点,采用外差探测得到与输入信号频率一致 的不失真解调,而采用直接探测则只能得到两倍频 率的失真解调(即上翻失真达到最大)。如果加大直 流偏压,则上翻失真减小,继续加大偏压,则可完全 消除上翻失真,得到不失真的解调。图4(d)中上翻 成为下凹,是由于 HgCdTe 探测器输入与输出反相 的缘故。图4表明理论分析和实验现象吻合较好。 在另一些直流偏压点,我们也拍摄了类似的解调 波 形,得到了与理论相一致的结果。

图 4 外腔电光调制分别采用外差探测和 直接探测时的解调波形比较

 (a) 调制输入信号, V_m=100 V;
 (b) 外差探测信号, V₀=0, 不失真;
 (c) 直接探测信号, V₀=0, 倍频失真;
 (d) 直接探测信号 V₀=50 V, 畸变(e) 外差或 直接探测信号 V₀=V_m/2=1600 V, 倍频失真

(收稿日期: 1987年9月14日)

改为 $\phi_0 = 2n\pi \pm \frac{\pi}{2} + 4\phi_0$ 考虑上述修正后, (5)式改为:

$$x_{\rm 0min} = \frac{\lambda V_{\rm min}}{4\pi V_0 \gamma K \cos \Delta \phi \cos \theta} \tag{6}$$

实验中调节 $θ\approx0.5^{\circ}$,引起的偏差为 4×10^{-5} , 因此可以忽略。工作点锁定后,相位偏离 4ϕ 约为 1° ,引起的误差为 1.5×10^{-4} ,也可忽 略。而伺服环路开环时,工作点抖动引起的 $4\phi>50^{\circ}$,误差大于 50° ,所以锁定干涉仪 后,测量准确度大大提高。

参考文献

1 Ohtsuka et al., Appl. Opt., 18(2), 219(1979)

2 汤俊雄 et al., 中国激光, 待发表