▲國瀛光 第16卷 第12期

SBN:Ce 光致折变晶体及其应用的实验研究*

林 旦 杨国光 顾天衡 杜一平 (浙江大学光仪系,杭州市) 何雪梅 唐元汾 何崇藩 (中国科学院上海硅酸盐所)

Experimental studies on SBN Ce photorefractive crystal and its application

Lin Dan, Yang Guoguang, Gu Tianqu, Du Yiping (Department of Optical Instrument Engineering, Zhejiang University, Hangzhou)

> He Xuemei, Tang Yuanfeng, He Chongfan (Shanghai Institute of Ceramics, Academia Sinica, Shanghai)

提要:本文对 SBN:Ce 晶体特性进行了实验研究,该晶体可在低功率激光下使用。并给出 SBN:Ce 在单根多模光纤中实现传输图像的实验结果。

关键词: 光致折变晶体,相位共轭波

一、导 1

光致折射率变化材料(以下简称 光折材 料)在研究光致折变非线性光学中日益 受到 人们的重视。迄今,已被研究的光折材料不下 十几种^[1]。掺铈元素的铌酸锶钡 BaSrNb₂O₆: Ce(简称 SBN:Ce),不但光折灵敏度高,响应 时间较快,而且有效尺寸较大,光学质量良 好,比较适合于实时光学位相补偿,进行动态 微分干涉等。本文首次对中科院上海硅酸盐 研究所提供的 SBN:Ce 进行了在低功率 He-Ne 激光(632.8 nm)照射下的响应时间,入射 光强与共轭波反射率,记录全息光栅的周期 与共轭波反射率之间的关系进行了实验研究 与测量,并将 SBN:Ce 和 LiNbO₃:Fe 晶体进行了性能比较。

李颜 Ia 正大 16.0 8.3 4.3

作为 SBN:Ce 在低功率激光下运转产生 共轭波质量的检测和应用的一个实例,我们 进行了将光栅图象(40 线对/mm)输入单根 多模光纤,并用 SBN:Ce 产生共轭波实现位 相补偿,获得传输图象成功,同时也证实了 SBN:Ce 的光学质量。

二、SBN:Ce 光折晶体

图1是测试SBN:Ce的装置原理图,这 是一种简并四波混频(DFWM)装置。由He-

*本文为国家自然科学基金资助项目。

收稿日期:1988年3月16日。

Ne 激光器发出偏振光, 经分束器 BS₁ 分成两 束, 一束经反射镜 M₁和 M₂构成泵浦光 I₁ 及 I₂。另一束经反射镜 M₈ 反射作为探测信 号光 I₈。三个光波 I₁, I₂和 I₃在 SBN:Ce 中混合产生第四个波 I₄, I₄ 是信号波 I₃的 位相复共轭波^[21]。此波被分束器 BS₂ 反射由 光电接收器 D 所接收。半波片与偏振片 P₁ 构成总光功率调节器。另一个半波片与偏振 片 P₂构成信号光 I₃的强度调节器。快门 S 在微机控制下决定数据采集的开始和终止。 微机还控制 A/D转换和贮存数据。在此实 验中采用的 SBN:Ce 的主要成份参量为: Ba 含量 0.48%、Ce 含量 0.2%。

图1 测试SBN:Ce的装置

2.1 共轭反射波的时间响应

在各光强之比为 $I_1:I_2:I_3=4.6:2.7:1$ 以及总光强 I_0 各为16.6、8.3、4.2、2.1 mw 时,实验结果证明共轭波的响应和消除时间 的关系曲线其形状趋势基本相同(图2)。实 验中的2 θ 角取16.6°,图中的圆点位置为实 测值,曲线是拟合值。

由图中的曲线可知^[3],此 SBN:Ce 中是

以扩散场占主要地位。图2的曲线是以此机制占优势来拟合的。可见吻合良好。由此结果,在扩散场机制占优势的条件下,响应时间 T_{eff}与晶体特征时间T₀的关系是:

$$T_0 = \frac{T_{eff}}{1 + (KL_0)^2}$$
(1)

式中K为波矢量;Lo为扩散长度。

由拟合数据得出 T_{eff} : $T_0 = 40:16$,由此 得 $L_0 \approx 0.53 \mu m$,可获得拟合曲线。

2.2 入射光强与响应时间的关系

仍用图1的测试装置。当光斑直径为3 mm时,获得共轭反射率达到稳定值一半时 所需时间与入射光功率间的关系,结果示于 图3。可见,共轭响应速率与入射光强的乘 积是一个常数。或者说,共轭反射率的响应 速率与入射光强成反比,这是扩散场占优势 所具有的特征。但当入射光总功率很低,如 图3所示。当 Io<1mw时,响应速率与入射 光总功率之间的乘积不再是常数,响应速率 下降,入射光总强度从1mw降为0.5mw, 但时间却从80s增长到180s,这一现象可解 释为在甚低功率激光照射下,暗导率的作用 已不可忽略的综故。

图 3 共轭响应时间 t 与入射光强 Lo 的关系

2.3 入射光强与共轭反射率的关系

旋转半波片,使透过偏振片 P1 的光强按 几何级数递增或递减。观测了稳态时共轭反 射与入射光强的关系,其结果示于图4。由于

共轭反射率很低,最大反射率 $R\approx4.2\%$,因 此, B近似与有效调制度m成正比^[41]。 此处 唯一使m变化的是暗导率与光导率之比。据 此而作出的理论菌线与之相当符合,在图4 中, $J=1, 2, \cdots, 6$,对应的光功率为 $I_0=$ $0.26\times2^{J-1}$ mW,由此可知,在 SBN:Ce 中存 在着大量的空阱与满阱,入射光强的变化导 致耗尽与饱和深度的变化,从而引起共轭反 射率的变化。故共轭反射率较明显地依赖于 光强的变化。

2.4 共轭反射率与所记录的全息光栅 周期之间的关系

改变 I1和 I3的夹角 20,将导致光折晶 体中全息光栅周期的变化,此周期用 A表示

 $A = \lambda/2\sin\theta \qquad (2)$

由于扩散场反比于光栅周期。可预料,随 I_1 和 I_3 间夹角 2θ 的增加,共轭反射率R将增加。实验结果证实了这的结论。在夹角 2θ 很小时,共轭反射率R与光栅周期 Λ 近乎线性关系,但随 Λ 而变小,R 渐趋饱和。

2.5 共轭波的偏振态

由于 SBN:Ce 的电光张量中最大的分量 是 γ₃₈, 因此, 为获得最大共轭反射率 R, 实验 中三束光 I₁, I₂, I₃ 的振动面都应该平行于 晶体的光轴 c。由于在晶体中均是非寻常光, 当信号光 I₃ 的偏振态变化, 而共轭波 I₄ 的 偏振态却不变, 仍与 I₂ 相同, 这说明, 位相共 轭镜相当于偏振鉴别器。仅当 I₃ 为线偏振光 且振动平行于光轴时,其共轭波才认为是 I₃ 的理想共轭复制,这与 BSO 有较大不同⁵³。

2.6 SBN:Ce 与 LiNbO₃:Fe 的比较 在图 1 的装置中,用 LiNbO₃:Fe 来替代 SBN:Ce,实验测得.

(1) LiNbO₃: Fe 的共轭反射率是 SBN:
Ce 的 1.7 倍,响应时间是后者的 6 倍。

(2) SBN:Ce 在光照下可以很快擦除空 间记录电场,而 LiNbO₃:Fe 擦除时间长,而 且不易消除。另外还必须用与记录光正交的 光来均匀照射。

(3) 在长时间记录时, 由于 LiNbO₃:Fe 中的光栅再生和重叠, 导致最后共轭波的破 坏而消失。

(4) 由于(3) 的原因,在LiNbO₃:Fe中还 会出现复杂的宏观散射现象,极不利于光学 信息处理。SBN:Ce中没有明显发现这现象。

三、SBN:Ce 在光纤传像中的应用

用单根多模光纤进行传像是当代科学技术追求的目标之一。利用单根多模光纤实现 二维图像的传输是最基本的装置。我们基于 Yariv等人的理论⁶⁰,利用 SBN:Co 光灵敏 高的特性,进行了将光栅图像耦合入光纤实 现了单根多模光纤的高分辨率传像,同时也 检验了它产生共轭波的质量。

3.1 实验装置和原理

实验装置如图 5 所示。光纤长 1.2 m,芯 径 $500 \mu \text{m}$,是折射率呈阶梯分布的单根多模 光纤。图 5 中物为复制光栅 (Ronehi 光 栅) G,其线数为 40 线对/mm,光源为线偏振的 He-Ne 激光。为使 $I_1 与 I_3$ 在光折晶体中符 合相干条件,因此在光路中增加 M_1 , M_2 , M_3 。 L_2 是 10 倍显微物镜,数值孔径 NA =0.2基本上与光纤数值孔径匹配,减少光能 损失。若直接采用平行光入射,由于光栅的 衍射角较大,而 L_2 与光栅之间又必须放置 BS₂,致使光栅像的 ±1 级谱分量逸出 L_2 的 口径,不能耦合入光纤,造成光栅图像的主要

图 5 SBN:Ce用于光纤传像的装置

信息丢失。因此采用图 6 的耦合原理。置入 焦距为 250 mm 的透镜 L₁,使其焦点对光栅 G 离散,获得发散光入射,从而使 ±1 级的谱 有部份可耦合入光纤,如图 6(b)所示。而图 6(a)是平行光入射的耦合方式。

偏振单色光在光纤中传输产生模式耦合,将输入信号光按光纤多模展开,且假定是 *x*方向振动,则

 $A_3(0) = \hat{x} \sum_{m,n} a_{m,n} \tag{3}$

式中 \hat{x} 是x方向的单位矢量。经长度为z的 光纤后,(3)式变成

$$A_3(z) = \hat{x} \sum_{m,n} b_{m,n} \exp(i\beta_{m,n} z)$$

 $+\hat{y}\sum_{m,n}c_{m,n}\exp(i\beta_{m,n}z) \qquad (4)$

按偏振分析,只有 \hat{x} 方向的振动光才能产生 共轭波 $A_3^*(z)$:

$$A_3^*(z) = \hat{x} \sum_{m,n} b_{m,n}^* \exp\left(-i\beta_{m,n} z\right)$$
 (5)

返回到光纤输入端后为

$$A_{3}^{*}(0) = \hat{x} \sum_{m,n} b_{m,n}^{\prime *} + \hat{y} \sum_{m,n} b_{m,n}^{\prime \prime *}$$
(6)

(6)式右边第一项 b^{**}_{m,n} 中含有原信号光 和 部 份杂散光。第二项 b^{**}_{m,n} 基本上是杂散光,即 背景。因此,用一个偏振器 P 就可以滤去 ŷ 方向上的背景光,大大改善了传输像的质量。

3.2 实验结果

图 7(a)的照片是未加 P 时的光栅像。可 见信号基本被噪声所淹没。图 7(b)是用 P 滤 去 ŷ 方向背景光后获得的光栅图像。图 7(c) 是在图 7(b) 基础上加空间滤波等方法后进 一步改善图像的结果。照片说明,本文的方

法是成功的,同时也说明 SBN:Ce 在低光功 率下产生的共轭波质量是良好的。

参考文献

- 1 R. R. Neurgankar et al. JOSA, B3(2), 274 (1986)
- 2 D. M. Pepper, Opt. Eng., 21 (2), 156(1982)
- 3 P. Gunter, Physics Reports, 93 (4), 199 (1982)
- 4 J. J. Amodei, Appl Phys. Lett., 18 (1), 22 (1971)
- 5 S. Mauick et al., JOSA, B4 (8), 1247 (1987)
- 6 A. Yariv, Appl. Phys. Lett., 28, 88 (1976)