然高.繁荣

康普顿型自由电子激光器的实验研究

傅恩生	王之江	E :	兵 陈	磊	石培升	周	慧芬
		(中国科	学院上海	光机所)			
何多慧	王复华	裴元	吉 贾)	自卡	梁汝珍	尹	彦
	1111	(中国]科学技术;	大学)			

Experimental investigation on Compton free electron lasers

Fu Ensheng, Wang Zhijiang, Wang Bing, Chen Lei, Shi Peisheng, Zhou Huifen (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)
He Duohui, Wang Fuhua, Pei Yuanji, Jia Qika, Liang Ruzhen, Yan Yan (University of Science and Technology of China, Hefei)

Abstract: Experimental results on a Compton free electron laser are reported. Free electron radiation with an average power of 1.4W at 10μ m was obtained when 22MeV relativistic electron beam was injected into the SmCo₅ permanent undulator with 3cm period for a total of 98 periods by a linear accelerator.

1、14、24-偏转磁铁; 2-溅射离子泵; 4.6-插板阀; 3、7-荧光屏活塞; 和真空室: 8-波纹管; 9一束流监测器; 10~13及19~22-四极矩磁铁; 15--光子牵引 17—扩束望远镜; 18、26—He-Ne 激光器; 23-狭缝; 25 16-TEA CO2 激光器; 进电机控制的可移动反射镜架; 27一热释电探测器或碲镉汞探测器;28一光谱仪

这里介绍我国第一台康普顿型自由电子激光器 的实验研究情况。这是一台以 30 MeV 直线加速器 为基础, 配置上电子束输运系统、常周期磁摆动器 (Undulator)和光学系统构成的器件。 辐射输出波 长在9~11µm。1986年11月,在这台器件上获得 了平均功率1.4W的10µm辐射输出。下面我们 介绍一下康普顿型自由电子激光器的实验装置,如 图1所示。直线加速器(图中未画出)把 22 MeV 的 电子束注入到电子输运系统。电子束输运系统由偏 转磁铁、束流控制狭缝(23)、四极矩磁铁、束流监测 器(9)、观测电子束的荧光屏(3,7)以及真空泵与插 板阀组成。 经输运线把能散度~1%、发散度~5π• mm·m rad 的高质量电子束注入到磁摆动器真空室 (5)。本装置可供做自由电子激光放大器和振荡器使 用。限于条件,目前仅进行了自由电子自发辐射输 出实验。 steel stortbele east notgmoU no notist

表	1	电	子	束	参	数	
衣	-	巴	1	不	19	女义	

电子能量	20~40 MeV
平均电流	5~7 mA
占空因子	1.4×10-2
峰值电流	0.35~0.5A
宏观脉宽	1 <i>µ</i> s
微脉冲宽度	5 ps
重复率	50 Hz
能散度	~1%
发射度	$\sim 5\pi \cdot \mathrm{mm} \cdot \mathrm{mrad}$
射频频率	2856 MHz
and a set of the set o	

表2 磁摆动器参数

and the second second	and the second se	and have a second data	the second se
周非	朝长度	10	3 cm
中小	心峰值磁场	an Flate	0.28T
磁向	司隙	- interior	15 mm
长	度	Vala and	294 cm
周非	钥数	305020	98
摆动	动器参量化	1.28	0.79

电子束的特征参数和磁摆动器参数示于表1和 表2中。磁摆动器的两端采用1/8周期长度的磁体 使磁场强度平滑降到零。自由电子激光器的真空室 和磁摆动器的结构如图2所示。每四块钐钴永磁体 组成一个摆动周期,一块钐钴磁体的尺寸为35×12 ×7.5(mm)³。经测定,总积分场强小于88G·cm, 满足总体实验要求。

在磁摆动两端的真空密封窗装有对 10 μm 成布 鲁斯特角的 NaCl 窗口, 它允许平行电矢量几乎无损 失地透过。相对论电子束经磁摆动器和终端的二极

图 2 自由电子激光器真空室和磁摆动器

图 3 康普顿型自由电子激光器辐射输出的波型图 (a)、(b)、(c)是三次分别拍的照片,其中(b)最高输 出达 270mW;(d)是探测器噪声水平,约 10mV 矩磁铁,成90°角偏转到真空系统外面的荧光屏靶。 用电视摄像机观察荧光屏靶上的电子束亮度和花样 尺寸。距 NaCl 布鲁斯特窗约 10 cm 的位置,正对输 运系统的轴线放置装在屏蔽盒内的热释电探测器和 信号放大器。用屏蔽电缆线将探测器信号输入到实 验大厅外面的示波器中观测。当电子束能量和输运 系统调整到合适数值时, 在示波器上观测到周期为 20 ms 的自发辐射信号,这时电子束的重复率为50 Hz。电子束重复率在25~60 Hz 范围内变动时,光 信号的周期也随之发生相应的变化。用示波照相机 摄到的一组图形如图3所示。根据 RD-L 型热释电 探测器的响应率和放大器增益, 计算得在1µs 的宏 观电子束脉冲内的10 µm 辐射的平均功率为1.4 W。正当有辐射输出时,从电子束路径上移开磁摆 动器,其他条件均保持不变,则观察不到任何信号, 这进一步证明了所观察到的辐射是电子摆动器磁场 和相对论电子束相互作用所产生的康普顿相干散射 辐射。这种辐射要比普通的同步辐射强度提高几百 倍,亮度提高几万倍[1]。1975年首次报道的康普顿 型自由电子激光器的自发辐射峰值功率为 15×10⁻⁶ W,自发辐射的平均功率为 15×10⁻⁶ W,受激辐射 峰值功率为 15 W,即比自发辐射峰值功率提高了 10⁵ 倍^[23]。

在实验中发现轫致 X 射线对辐射探测有相当大的影响,示波器指示值可达 100 m V 左右。我们用 4 cm 厚的铅板做 X 射线屏蔽,消除了 X 射线的干扰,使噪声水平下降到 10 m V 以下,探测到自由电子辐射输出。

在本实验的筹备阶段,上海光机所的王明常、黄 序人、凌根深同志曾参加过部分工作;在本实验进行 期间,中国科技大学加速器实验室和光电子实验室 的同志们都给予了很多帮助,在此表示衷心的感谢。

参考文献

Kincaid B M. J. Appl. Phys., 1977; 48(7): 2684
 Elias L et al. Phys. Rev. Lett., 1976; 36: 717

(收稿日期:1987年2月2日)

半导体激光器阈值电流的精确测量

赵一广 (北京大学物理系)

Accurate measurement of threshold current for semiconductor lasers

Zhao Yiguang

(Department of Physics, Peking University, Beijing)

Abstract: Analysis in this paper shows that a harmonic measurement method can be used to determine accurately the threshold current of semiconductor lasers. The experimental method and results are given and compared with those of other methods.

國值电流是半导体激光器的重要参数之一。通常用测量半导体激光器的输出光功率——电流(P-I)特性曲线、观察远场或近场图样的变化以及光谱随电流的变化等来确定阈值,但误差较大。本文用测量半导体激光器调制光信号的二次谐波来确定阈值电流^[11]。理论和实验都表明用谐波测量法测定半

导体激光器的阈值电流比其它方法有较高的精度。

二、理论分析

由半导体激光器的总模速率方程[2]:

 τ_p

$$\tau_s \frac{dN}{dt} = J - N - GS \tag{1}$$

$$\frac{dS}{dt} = (G-1)S + CN \tag{2}$$

其中 τ_s和 τ_p分别为载流子寿命和光子寿命;

. 555 .