4国瀛光

第15卷 第6期

电子全息术中静电双棱镜偏转特性的简化计算

陈建文

(中国科学院上海光机所)

提要:本文采用经典电磁理论中的 Laplace 和 Lowntz 方程,推导出电子束在静电双棱镜中的偏转角解析表达式,并对某些实验结果作了解释。

Simplified calculation method for deviation characteristics of electrostatic biprism in electron holography

Chen Jianwen

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)

Abstract: Analytical expression of the deviation angle for free-electrons in the electrostatic biprism is given using Laplace and Lorentz equations in classical electromagnetic theory and some experimental results are explained with the analytical expression.

一、引

电子静电双棱镜亦称 Möllenstedt 静电 双棱镜,由于其工作特性类 似于光学中的 Fresnel 双棱镜,因此而得名。目前,在电子 干涉实验、干涉电子显微镜和电子全息术中 已被广泛地用作电子分束器。这种分束器的 优点是电子只和电场相互作用,而不与客观 实体发生相互作用。

许多文献^[1~3]已对这种静电双棱镜的工 作原理和结构作了详细描述。文献[1]还用 电解槽模拟了这种双棱镜,用实验方法测定 了双棱镜电极附近的电场分布,结果表明,双 棱镜内的电势变化与柱面电容器的电势分布 相似。但是作者在推导自由电子在这种双棱 镜中的偏转角时,又把双棱镜当成了平板电 容器。

电子在分束器中的偏转角是一个非常重要的参数,它直接决定电子束重叠区域的大小和干涉场的空间频率。文献[3]把双棱镜 看成柱面电容器,并考虑了它对电子路程的 影响,求取了自由电子在观察平面上的程差 和干涉条纹间距,按Bragg公式求出了电子 在双棱镜中的偏转角,但数学处理比较繁杂。

本文根据经典电磁理论,从 Laplace 方 程和 Lorentz 方程出发,推导出自由电子在 静电双棱镜中的偏转角,不仅处理简捷,而且 在一定的实验参数条件下,能给出所允许的 收稿日期: 1987年1月9日。 最大偏转角。

二、计 算 方 法

假定电子显微镜中灯丝与双棱镜石英丝 相互平行,如图1所示,并且假定镀金石英丝 长度较其直径及到地电极的距离大得多,那 么据经典电磁理论,空间无自由电荷分布时, 电势V满足 Laplace 方程.

> $\nabla^2 V = 0_{\circ}$ (1)

在柱坐标系内:

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \theta^2} + \frac{\partial^2 V}{\partial z^2} = 0_{\circ}$$
(2)

图1 静电双棱镜示意图

$$\frac{\partial V}{\partial \theta} = 0$$

如果石英丝足够长,那么:

$$\frac{\partial V}{\partial z} = 0_{\circ}$$

因此,V = V(r),即:

$$r^2 \frac{d^2 V}{dr^2} + r \frac{dV}{dr} = 0_{\circ} \tag{3}$$

作变量代换, 令 $r = e^t$, 则

$$\frac{dr}{d\xi} = e^{\xi},$$
$$\frac{dV}{d\xi} = r \frac{dV}{dr},$$

$$\frac{d^2V}{d\xi^2} = r \frac{dV}{dr} + r^2 \frac{d^2V}{dr^2} \,, \qquad (4)$$

将(4)代入(3)得

$$V = O_1 \xi + O_2 = O_1 \ln r + O_2, \qquad (5)$$

代入静电双棱镜的边界条件,

 $r = r_0$ 时, $V = V_f$, $r = b_1$ 时, $V = 0_o$ 式中 b1 为双棱镜石英电极到地电极间的距 离。很容易求得双棱镜内时电势分布为:

 $V(x_0, z_0)$

$$= \begin{cases} \frac{V_{f}}{2\ln(r_{0}/b_{1})} \ln\left(\frac{x^{2}+z^{2}}{b^{2}}\right), \\ (r^{2} \leqslant x^{2}+z^{2} \leqslant b_{1}^{2}); \\ 0, \quad (b_{1}^{2} < x^{2}+z^{2})_{\circ} \end{cases}$$
(6)

这个结果与 Möllenstedt 当年用电解槽模 拟 静电双棱镜所获实验结果完全一致。

式中 r=(x²+z²)^{1/2},在轴对称情况下: 当电子枪中的自由电子经过此双棱镜 时, 受棱镜中的电场作用, 运动方程可用 Lorentz 方程描述:

 $E_{\mathbf{x}} = -(\nabla V)_{\mathbf{x}} = -\frac{\partial V}{\partial x},$

$$\frac{d}{dt} m \dot{x} = -|e| E_{x_0} \tag{7}$$

而

因此:

$$d\ddot{x} = \frac{|e|}{mV_0} \frac{\partial V}{\partial x} dz, \qquad (8)$$

式中, $dz = V_0 dt$, m和 e分别为自由电子的 静止质量和电荷量,由(8)式得:

$$\dot{x} = \frac{|e|}{m} \int_{-\sqrt{b_1^2 - x_2}}^{\sqrt{b_1^2 - x_2}} \frac{\partial V}{\partial x} dz_{\circ}$$
(9)

如图2所示:

$$x \approx V_0 \text{ tg } \alpha \approx V_0 \alpha_0$$

由于α通常小于10-3,故在弱场近似条件下, tg α≈α,因此:

$$\alpha = \frac{|\theta|}{mV_0^2} \int_{-\sqrt{b_1^2 - x^2}}^{\sqrt{b_1^2 - x^2}} \frac{\partial}{\partial x} V(x, z) dz_o$$
(10)

将(6)代入(10)式:

$$\alpha = \frac{2|e|V_f}{mV_0^2 \ln(r_0/b_1)} \operatorname{arc} \operatorname{tg} \frac{\sqrt{b_1^2 - x^2}}{x},$$
由于 $b_1 \gg x, \ \sqrt{b_1^2 - x_1^2} \approx b_1, \ \frac{b_1}{x} \to \infty$

. 342 .

那么

在不考虑相对论效应时,

 $mV_0^2/2 = eV_a,$

式中V。为电子的加速电压,那么

$$\alpha = \pm \frac{\pi}{2} \frac{1}{\ln(r_0/b_1)} \frac{V_f}{V_a} \,. \tag{11}$$

这个结果和文献[3]中给出的解折表达式完 全一致。

α符号的确定为图3所示:

$$V_{j} \ge 0 \begin{cases} x \ge 0, & \alpha < 0, \\ x < 0; & \alpha \ge 0; \end{cases}$$
$$V_{j} \le 0 \begin{cases} x \ge 0, & \alpha \ge 0; \\ x < 0, & \alpha < 0, \end{cases}$$

我们通常把*V_f*<0的双棱镜(即在双棱镜上施加一负电压)称作发散双棱镜,把*V_f*>0的双棱镜称作会聚双棱镜。

自由电子经双棱镜偏转以后,将发生重叠,由于电子的波动特性,在重叠区产生干涉,干涉条纹的间距为:

$$S = \frac{\lambda(a+b)}{2a\alpha},$$
 (12)

如图 4 所示,式中 a 为有效电子束源到双棱 镜石英丝的距离, b 为石英丝到干涉平面 W 的距离,而重叠区域的大小,由简单的几何关 系可以推导出:

$$W = \frac{b\alpha - r_0(a+b)}{a}, \qquad (13)$$

因此所能获得的干涉条纹数为:

$$N = \frac{W}{s} = \frac{4ab\alpha^2}{\lambda(a+b)} - \frac{2r_0\alpha}{\lambda}, \quad (14)$$

式中 λ 为电子的德布罗意波长。从上式可以 看出,当实验布局已确定以后,所获条纹总 数,在不考虑电子束源的相干性时,取决于偏 转角 α,即取决于双棱镜上施加的电压值。

如果电子束源是一部分相干源,即电子 束源具有一线度 *ε*,并假定电子束源发射电 子密度沿 *ε* 的分布是一个高斯函数,即

$$F_1(s) = s_0^{-1} (2\pi)^{-1/2} \exp(-s^2/2s_0^2),$$
(15)

并假定由于电压波动,使得电子密度沿波长的分布亦是一个高斯函数

图 3 夹角α符号的定义

F

$$2^{(k)} = 2(\Delta k)^{-1}(2\pi)^{-1/2} \\ \times \exp[-(k-k_0)^2/2(\Delta k)^2],$$

(16)

这里 $F_1(\varepsilon)$ 、 $F_2(k)$ 分别满足以下归一化条件:

$$\int_{-\infty}^{\infty} F_1(\varepsilon) d\varepsilon = 1;$$
$$\int_{0}^{\infty} F_2(k) dk = 1,$$

. 343 .

图 4 静电双棱镜光学系统简图

式中 k_0 为对应电子德布罗意波中心波长的 波数, Δk 为高斯函数的宽度。

如果干涉平面上电子密度分布为:

$$I(x) = 2I_0 \left\{ 1 + \cos\left[\frac{2\pi}{s} \left(x + \frac{b}{a} s\right)\right] \right\}_{\circ}$$
(17)

将(15)、(16)代入(17)式得

$$I(x) = \int_{-\infty}^{\infty} \int_{0}^{\infty} I(x, k, s) F_{1}(s) F_{2}(k) ds dk$$
$$= 2I_{0} \left\{ 1 + \exp\left[-2\left(\frac{\pi b_{0} \varepsilon_{0}}{a_{0} s_{0}}\right)^{2}\right] \times \exp\left[-2\left(\frac{\pi x}{s_{0}^{2}} \Delta s\right)^{2}\right] \cos\frac{\alpha \pi x}{s_{0}} \right\},$$
(18)

式中

 $\Delta \mathbf{s} = \frac{d\mathbf{s}}{dk} \ \Delta k_{\circ}$

很易求得在干涉区域内,最大和最小的电子 密度分别为:

$$I_{\max} = 2I_0 \left\{ 1 + \exp\left[-2\left(\frac{\pi b_0 \varepsilon_0}{a_0 s_0}\right)^2\right] \\ \times \exp\left[-2\left(\frac{\pi \Delta s}{s_0^2} x\right)^2\right] \right\}, \quad (19)$$

$$I_{\min} = 2I_0 \left\{ 1 - \exp\left[-2\left(\frac{\pi \delta \varepsilon_0}{a_0 s_0}\right)^2 \right] \times \exp\left[-2\left(\frac{\pi \Delta s}{s_0^2} x\right)^2 \right] \right\}_{\circ} \quad (20)$$

如只考虑束源线度的影响,即令 $\Delta k = 0$, 按照 Rayleigh 判据:

$$\frac{I_{\min}}{I_{\max}} = \frac{1 - \exp\left[-2\left(\frac{-\pi b_0 \varepsilon_0}{a_0 s_0}\right)^2\right]}{1 + \exp\left[-2\left(\frac{-\pi b_0 \varepsilon_0}{a_0 s_0}\right)^2\right]} < 0.8_{\circ}$$
(19)

求得: $\frac{\pi b_0 \varepsilon_0}{a_0 s_0} < (\ln 3)^{1/2},$

$$\alpha_0 < \frac{(a+b)(\ln 3)^{1/2}}{k_0 b_0 \varepsilon_0},$$
(20)

(20)式表明,当 *a*,*b*、*ε*,*k*确定以后, α不可以 任意取值,这是一个重要的结果,因为从(14) 式看出,只要增大偏转角,即增加双棱镜石英 丝上的外加电压,就可以得到任意多的干涉 条纹数,在许多文献中,普遍采用上述公式进 行讨论,然而实验结果表明,当外加电压达到 一定值以后,就观察不到干涉条纹,原因就是 不满足方程(20)的结果。

本工作是在意大利的里雅斯特(Trieste) 国际理论物理中心(ICTP)资助下进行的。

参考文献

- [1] Möllenstedt G, Duker H. Z. Physik, 1956; 145 (3): 373
- [2] Tonomura A et al. J. Electron Microsc., 1979; 28(1): 1
- [3] 陈建文。光学学报,1985;5(3):229