第13卷 第1期

Blumlein 放电长脉冲 XeCl 激光器的窄线宽输出

成序三 楼祺洪 郑承恩 魏运荣 丁爱臻 王润文 (中国科学院上海光机所)

提要:本文在一台长脉冲 Blumlein 放电 XeOl 准分子激光器上采用光栅、棱镜和标准具等腔内选择元件,研究了 XeOl 激光器的调谐特性、谱线宽度和光束发散特性。得到了单脉冲能量 2 mJ、窄线宽(~10⁻²Å)和衍射极限发散角(0.15 mrad)的激光输出。

Narrow linewidth output of a XeCl laser with long pulse Blumlein transmission line discharge

Cheng Xusan, Lou Qihong, Zheng Chengen, Wei Yunrong, Ding Aizhen, Wang Ruwen
(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: Wavelength tuning, linewidth and beam spread characteristics have been studied by using a long pulse discharge XeCl laser with grating, prisms and etalons as the intracavity mode-selecting elements. The laser output with the energy of 2 mJ per pulse, narrow linewidth $(\sim 10^{-2} \text{\AA})$ and diffraction limited devergency $(\sim 0.15 \text{ mrad})$ have been obtained in our experiment.

作为高功率紫外相干光源的 XeCl 激光器被广泛用于受激喇曼散射、位相复共轭和光化学等方面的研究。但这些应用要求激光线宽小于 0.5 Å 到 10^{-2} Å,而自由振荡 XeCl 激光器一般 有 10 Å 左右的线宽。 Bourme 和 $Alcock^{(1)}$ 用氩离子激光泵浦环形染料激光器,然后用 ADP 倍频,对 3080 Å 这一波长得到 4×10^{-4} Å 的线宽,单脉冲能量为 $150\,\mu$ J。 Pacala 等人 [3] 对 XeCl 直接进行压缩线宽,得到的线宽 7×10^{-4} Å,但能量仅为 $10\,\mu$ J 左右。本文采用光栅、棱镜、标准具

等腔内选模元件对 XeCl 激光谱线和光束发散角直接进行控制,得到线宽在 0.1~10⁻² Å 范围,近衍射极限发散角输出波长为 3080 Å 的 XeCl 激光,最大单脉冲能量达 2 mJ。

一、实验装置

1. 对器件的要求

要直接控制 XeCl 激光器的线宽,必须 收稿日期: 1984 年11月26日。 在腔内加对波长选择损耗元件。光在腔内经过这些元件的次数越多,线宽越窄。 色散元件使线宽变窄,也使腔内损耗加大。因此,最理想的是Q值高、腔短、脉宽长的器件。

实验用的是放电管长(腔长)L=1m、放电体积70×1.7×0.8 cm³、激光脉宽80 ns(全宽度)、输出能量100 mJ 的紫外预电离平板 Blumlein 传输线放电 XeCl 激光器。平板采用了如图1的折叠方式(剖面图),放电电压半宽度可达120 ns,从而使激光增益脉宽加长。

图 1 平板传输线示意图

输出耦合端采用反射率 R=80% 的 镜 (自由振荡时用 R=20%)。由于在激光器内要放置标准具、光栅或棱镜等元件,故用外腔结构代替自由振荡的内腔结构,在本实验外腔式光路中,尽可能把腔内色散元件排列紧凑,使腔长控制在 1.4 m 内。

2. 对选模元件的要求

a) 标准具: XeCl主要的激光跃迁是 0-0、0-1、0-2 三个上下能级振动带之间的跃迁,其间距 $d\lambda \approx 2.5$ Å。令其等于标准具的 损耗周期 $d\lambda = \frac{\lambda^2}{2nd}$,(n—材料折射率,d—标准具厚度, λ —波长),因此标准具厚度应为 $d < \frac{\lambda^2}{2nd\lambda} \approx \frac{3}{2.5} \times 10^{-4}$ (m),即要求一块 0.1 ~ 0.2 mm 的标准具来选出单支跃迁谱线。但 这仅是理论估计。 下面将看到,我们用一块 d=1 mm 和一块 d=3 mm 的标准具组合放在腔内,就得到了单线输出。 这是由于具有 高反射率的标准具在腔内造成很高的 损耗,因而只有一个占优势的振动带建立振荡。

采用如图 2(a) 光路, 其中 F_1 为厚 d_1 =

(a) 标准具选模光路

M₁—全反镜; M₂—反射率 80% 镜; D₁、D₂—
小孔光阑, F₁~F₃—标准具

(b) 光栅选模

(c) 棱镜选模 θp—布儒斯特角

图 2 标准具、光栅、棱镜选模光路图

 $0.1 \,\mathrm{mm}$ 两面镀 75% 反射率的石英标 准具; F_2 为 d_2 =0.2 mm 反射率 R_2 =75%; F_3 为 d_8 =1 mm, R_3 =90%。 F_2 、 F_3 用于压缩线宽,它们的分辨率本领各为 1.8×10^3 和 8.9×10^4 , 与之相应的单程线圈分别为 0.52 Å和 0.034 Å。因这里的估算只考虑了反射率锐度 $F_R = \frac{2\sqrt{R}}{1-R}$,实际上考虑标准具的光学面误差,单程线宽比估计值要大一些。 但由于光在腔内要多次往返,所以获得的激光输出线宽 1.14×10^{-2} Å. 要低于单程线宽估计值。

- b) 掠入射光栅: 把图 2(a)中 F_1 、 F_9 用 1200 线/mm、5000 Å 闪耀角的反射光栅(F_8 仍放在腔内压缩线宽)代替,用 5° 角掠入射一级衍射耦合,在不考虑衍射效应的几何近似下^[3],用 2.5 mm 的狭缝光阑理论估算的单程线宽为 0.6 Å。如图 2(b),转动反射镜 M_1 ,可选择不同的波长。这种光路用掠入射来提高光栅照的宽度 D(分辨率正比于 D),比采用望远镜扩束系统损耗要小,也易调节。
- c) 棱镜: 把图 2(b) 中光栅换为 60° 石 英棱镜, 如图 2(c)。这里入射角 θ 为布儒斯特角(\sim 57°), 以减小损耗。其理论单程线宽^[4]估计约为 0.3 Å。

二、光谱特性和能量特性

1. 光谱特性

采用以上选模元件,获得了3082.10 Å (0-2),3079.61 Å (0-1),3077.04 Å (0-0) 三 条单谱线振荡。由于选模元件和腔的共同选频作用,在3077 Å 到3082 Å 5 Å 范围内实现了许多条单线振荡谱线。我们用的是一米光栅光谱仪摄二级谱,然后用比长仪定波长。图 3(a) 是3077 Å 和3079 Å 的两根谱线。

在用标准具作为选模元件 拍摄的 谱板中,出现一些很锐的谱线结构,谱线间距为0.01 Å 到 0.6 Å 不等。如图 3(b),总线宽为 0.771 Å 的谱线,实际上有 3080.19 Å、3080.49 Å、3080.66 Å、3080.80 Å、3080.96 Å 五条精细结构。估计这些与 XeCl 的转动结构有关。

为测定线宽,我们采用一块厚 3 mm 的石英标准具,镀 3080 Å 为 70% 的反射率的膜,采用图 $4 \text{ 光路摄取干涉环决定线宽。 这块标准具的反射精细度 } F_R=5.6$,面精细度 $F_R=8$ 。由

$$\frac{1}{F^2} = \frac{1}{F_R^2} + \frac{1}{F_R^2}$$

有 F^2 ≈21。所以分辨本领(这里 d 为标准具

(a) 3077 Å 和 3079 Å 的两根谱线

(b) 用 1.6×8×10 倍的光学显微镜翻拍的一根 0.77 Å 宽度的谱线的精细结构, 从左至右的五根 谱线依次为 3080.19 Å、3080.49 Å、3080.66 Å、3080.80 Å和 3080.96 Å

图 3 XeCl 激光光谱特性

图 4 标准具拍干涉环定线宽的光路图 D_1 —限束光阑; L_1 — f_1 =6 cm 透镜; L_2 — f_2 =22.5 cm 透镜; F—d=3mm, B=70% 石英标准具

图 5 确定线宽的干涉环

$$\frac{\lambda}{\Delta\lambda} \approx \frac{4\pi dF}{4.147\lambda} \approx 1.4 \times 10^5$$

厚度)可分辨的线宽

 $\Delta\lambda \approx 2.2 \times 10^{-2} \text{Å}_{\odot}$

所以用这块标准具测线宽其下限约为 10^{-2} Å。图5 是用一台135 海鸥照相机(把镜头拿掉)在 L_2 (见图4)焦面上摄得的用标准具作选模元件时的干涉环。线宽计算公式为

$$\Delta \lambda = \frac{1}{f_2^2} \lambda r \, \Delta r$$

 Δr 为干涉环条纹宽度,r 为环平均半径, f_2 为 L_2 的焦距。 Δr 、r 由比长仪测定。 用标准具 做选模元件时线宽为 1.14×10^{-2} Å。实际线 宽应比这更窄,因这已达到了测线宽用的标准具的理论分辨极限。用光栅和棱 镜选 模,线宽都为 0.1 Å。

用标准具作选模元件,用 d=1 mm 和 d=3 mm 两 块 标 准 具 就 得 到 了 窄 线宽 (<0.1 Å)的输出,这种厚度的石英标准具一般实验室是不难得到的。 腔 内 放置 d=0.1 mm, 0.2 mm, 0.2 mm, 1 mm 四块标 准 具 时,得到 56 μ J 的激光输出,但线宽仍为 1.14×10^{-2} Å,与用 d=0.1 mm, 0.2 mm 和 1 mm 三块标准具时一样,原因是摄干涉环的那块标准具已到了分辨极限。

限孔准直光阑 D_1 、 D_2 把振荡区控制在放电最均匀的一小块中心区域,光束空间相干性变好(发散角 $0.3 \,\mathrm{mrad}$)。此外标准具等元件在腔内还有限横模的作用^[2],用标准具时光束发散角小于 $0.15 \,\mathrm{mrad}$,这已接近衍射极限($\sim 0.12 \,\mathrm{mrad}$)。

2. 激光输出能量和波形

在测量了激光输出的光谱特性和光束发散角特性的同时,我们还对激光输出能量和波形进行测量,在光阑 D_1 、 D_2 的孔径为8 mm时,用标准具做腔内选模元件时可得1~2 mJ、0.1 A 线宽的激光输出。 若把光阑孔径减小到 2.5 mm,约有 150 μ J 的能量,线宽缩窄到 10^{-2} Å。采用光栅和棱镜时,由于色散发生在水平方向,采用 2.5×10 mm²的方孔径光阑,也获得 1 mJ 的能量输出。 如果作注入锁定源,则由于非稳腔后镜是一个圆

形注入耦合孔, 棱镜和光栅也采用 2.5 mm 直径圆孔光阑,能量在 100 μJ 左右。

图 6 是用 1.4 m 长外腔式光路时的激光波形。没有放调谐元件时,脉宽全宽度 70 ns, 小的调制信号(调制周期 T=光在腔中往返一周时间)是由于长的腔以及放电管两块石英窗的损耗而形成的自锁模现象。腔内置入三块标准具后调制信号消失,脉冲前沿被削去 10 ns,后沿削去 25 ns,剩下 35 ns,波形振幅也有所下降。可见腔内选模元件的插入导致能量不可避免地严重下降。

(a) 自由振荡时的激光波形

(b) 加标准具的激光波形 图 6 激光波形(时标 100 MHz)

三、结 束 语

为了比较不同色散元件的输出特性,我们对光栅、棱镜、标准具的线宽、能量特性进行了系统的测量,主要实验结果列于表 1。从表 1 可见,采用标准具的方法不仅可以获得较窄的线宽,而且可以获得较大的激光能量,是比较理想的方法。

同时,我们还首次发现了单谱线输出时的精细结构,估计这些结构与 XeCl 光谱的转动结构有关,这方面的分析正在进行之中。

清华大学实习同学王晓冬参加过部分实验工作,在此致谢。

性能	光	路	光阑孔径	行射极限 光束发散角	实 际 光束发散角	最窄线宽	最大能量
选模 元件	全反射端	输出耦合端*	(mm ²)	(mrad)	(mrad)	(Å)	(mJ)
自由振荡	性性病性 化性性以	用 20% 反射率的镜	直径 D=30	10-3	0.8×7.2	10	100
			D=2.5	0.12	0.25×0.3	10	5
标准具**	F_{1}	F_{4}	D=8	3.9×10^{-2}		0.4	2.1
			D=2.5	0.12	0.15	0.2	0.17
	F_1, F_2	F_4	D=8	3.9×10 ⁻²		0.1	2
			D=2.5	0.12	0.15	1.14×10 ⁻²	0.15
	F_1, F_2, F_3	F_4	D=2.5	0.12	0.15	1.14×10 ⁻²	0.056
光棚	1200 (<u>线</u> (5° 掠入射)	F_4	D=2.5	0.12	0.25	0.1	0.12
			2.5×10	0.12×0.03	用 北京	0.2	1
棱 镜	两个 60° 棱镜	F4	D=2.5	0.12	0.25	0.1	0.1
			2.5×10	0.12×0.03	以自動學	0.2	AME, 00

- *: 除自由振荡外均用 R=80% 耦合输出反射率。
- **: 各标准具参数: F₁: d=0.1 mm, R=75%; F₂,F₃: d=0.2 mm, R=75%; F₄: d=1 mm, R=90%。

参考文献

- [1] O. L. Bourme, A. J. Alcock; Appl. Phys. Lett., 1983, 42, No. 9, 777.
- [2] T. J. Pacala et al.; Appl. Phys. Lett., 1984, 44,

(上接第51页)

安装了一台全匹配液盒的双级电光选脉冲开关(每级都由一对棱镜和一块 KD*P组成), 共有六个匹配液盒。对1.06 μm 锁模激光 脉冲的总透过率测得为69%。

3. 匹配磷酸盐钕玻璃

磷酸盐钕玻璃是一种高增益、低非线性 折射率的优良激光工作物质。但耐潮能力 差,端面会因潮解而遭破坏。对小尺寸的 棒(如 \$\phi6 \times 80 mm)尚可用真空镀膜的方 法解决,对大尺寸的钕玻璃棒(如 \$\phi70 \times 500 mm)就很困难了。由于高馏分的氟氯油 具有接近树脂的粘度,可以作为有匹配功能 的粘接剂使用。即把已增透的光学玻璃片用 氟氯油直接粘贴在钕玻璃棒的两端。这样既 保护了端面又减小了界面反射。牌号在 No. 7, 658.

- [3] G. L. Micheal et al.; Appl. Opt., 1978, 17, No. 14, 2224.
- [4] A. 加塔克著(印度); "光学", 梁铨廷, 胡宏章译, 机械工业出版社, p. 226.

FL-G-330 以上的氟氯油适于此种用途。

此外,由于高馏分氟氯油既具有高粘度 又能承受高强激光,所以可以代替加拿大胶 来胶合复合透镜组。这种透镜组能克服原有 胶合透镜不耐强光的缺点而在激光系统中使 用。

上海有机所附属工厂糜同伦、莫国贤等 同志热情提供各种试样,中国科大实习生刘 文旭同志参加了部分测试工作,谨表谢忱。

参考文献

- [1] Laser Focus Buyer's Guide, 1983-18th, Edition.
- [2] 邝社锡;《中国激光》, 1983, 10, No. 3, 191。
- [3] 董惠芳等;《激光与红外》,1983, No. 12, 37。
- [4] 常引秀等;《激光与红外》, 1983, No. 5, 45。
- [5] 周复正等; 《中国激光》, 1983, 10, No. 10, 735.