中国海兔

第11卷 第1期

用扁长函数分析激光模式

于克明 郭 维 孙承宴 (天津大学精密仪器工程系)

提要:提出了用扁长函数描述激光模式的新方法,并按照这种方法分析了方形 镜、圆形镜共焦激光器的模式特性。

Analysis of laser mode based on prolate functions

Yu Keming, Guo Wei, Sun Chengyan

(Department of Precision Instruments and Engineering, Tianjin University)

Abstract: In this paper a new method describing laser mode based on prolate functions is presented and with the new method the mode properties of the confocal laser with square and circular mirrors are analysed.

一、引言

从数学上来看,求开腔模式就是求解非涅尔-基尔霍夫衍射积分方程。我们在求解该方程的过程中引用了扁长函数,并且从最简单的激光器的几何形状——共焦的方形镜和圆形镜出发,分析了场分布、损耗、谐振条件以及光斑大小等参数。此外,还可以推广到一般几何形状的激光器,理论上证明了其模式是扁长函数的叠加^[13]。

二、模式分析

我们从所熟悉的菲涅尔-基尔霍夫 衍射 积分方程出发引入扁长函数。 这里, 我们只 考虑衍射损耗, 忽略反射镜的透射损耗。 在腔镜 (M_1, M_2) 间反射一次场分布能自再现所满足的方程为:

$$\iint_{M_{1}} u(x_{1}, y_{1}) \exp\{j(k/b)(x_{1}x_{2} + y_{1}y_{2})\}
\times dx_{1}dy_{1} = \mu\sigma u(x_{2}, y_{2})
\mu \equiv j^{-1}\lambda b \exp(jkb)$$
(1)

其中: b 为腔长; σ 为衰减系数; 式中其它符号具有通常的意义。

进一步的分析,我们指定反射镜 M_1 的形状:

- 1. 正方形镜, M₁ 和 M₂ 边长为 2 x₀
- ① 场分布: 假定方程(1)的解 u 的形式可分离变量,

$$u(x, y) = F_1(x) F_2(y)$$
 (2)

 σ 写为: $\sigma = (\sigma_1 \sigma_2)^{\frac{1}{2}} j \exp(-jkb)$ (3) 由于方形镜两个方向的变换完全相同,故可

收稿日期: 1982年10月21日。

只求出一个方向的变换。(1)式缩记为:

$$\int_{-x_{e}}^{x_{e}} F_{i}(x) \exp \left[j(k/b)xy\right] dx$$

$$= \left(\sigma_{i} \lambda b\right)^{\frac{1}{2}} F_{i}(y)$$

$$|x|, |y| \leqslant x_{0}, i=1, 2$$

$$(4)$$

下面定义几个物理量:

带宽:
$$\Omega = kx_0/b$$
 (5)

空间带宽乘积:
$$C=x_0\Omega$$
 (6)

新变量:
$$W = ky/b$$
 (7)

则(4)式可写为:

$$\int_{-x_0}^{x_0} F_i(x) e^{jwx} dx$$

$$= \sigma_i^{\frac{1}{2}} (2\pi x_0/\Omega)^{\frac{1}{2}} F_i(wx_0/\Omega)$$
 (8)

 $F_i(i=1, 2)$ 相当于线性扁长函数 $\psi_n^{(1)}$ 。实际上满足本征方程(1)的函数可能是众多的,把(2)式写为:

$$u_{mn}(x, y) = F_m(x) \cdot F_n(y) = \psi_m(x) \cdot \psi_n(y)$$
(9)

$$m, n=0, 1, 2, \cdots$$

对于(9)式,给定一组m、n 便表示一个特定模式。

② 损耗:由(3)式可以推出衰减系数 σ_{mn} 的表达式:

$$\sigma = \sigma_{mn} = \sigma_m^{\frac{1}{2}} \sigma_n^{\frac{1}{2}} j \exp(-jkb)$$

$$= (j^m \lambda_m^{\frac{1}{2}}) (j^n \lambda_n^{\frac{1}{2}}) j \exp(-jkb)$$

$$= j^{m+n+1} e^{-jkb} (\lambda_m \lambda_n)^{\frac{1}{2}}$$
(10)

③ 谐振条件: 现在考虑 σ_{mn} 的相位,它 决定了模序数 m, n, 由于光腔是光学干涉 仪,因此,仅当往返相位是 2π 的整数 q 倍时

才存在谐振模,亦即镜面上才有最强光照(两次反射=一次往返)。单程损耗为(10)式,往返损耗为(10)式的平方,取其相位部分,则谐振条件为:

$$2\pi q = 2 \mid -kb + \frac{1}{2}\pi(m+n+1) \mid (11)$$

(11)式即为模式所满足的相位自再现条件。

我们用 TEM_{mnq} 表示模式,m、n 表示了横向分布特性,而 q 表示了纵向分布特性。由 (11)式可知,对于给定的 q,总是对应着许多同时谐振的横模数 m、n,这便揭示了模式的多样性。

④ 光斑大小: 当 e>10,根据线性扁长函数表达式^[1] 的近似指出,模式花样成为厄米权重高斯函数分布。在此近似的基础上定义镜面上的光斑大小。 我们取模 TEM_{00q} 下降到其中心值 $\frac{1}{e}$ 处的点作为其光斑 边界点,可以给出光斑大小为:

$$2(\lambda b/\pi)^{\frac{1}{2}} \tag{12}$$

从(12)式看出,光斑大小与 x_0 无关,故一旦 x_0 大到足以使 $c \ge 10$ 再进一步扩大镜面(即增大 x_0),对光斑大小并无影响。

2. 圆形镜:

 M_1 、 M_2 半径为 r_0 (横向),很自然应把直角坐标变为极坐标,下面给出极坐标下的 (1) 式:

$$\int_0^{2\pi} \int_0^{\mathbf{r_0}} r_1 u(r_1, \theta_1) \exp\{j(k/b)r_1 r_2 \cos$$

 $\times (\theta_2 - \theta_1) \} dr_1 d\theta_1 = \mu \sigma u(r_2, \theta_2)$ (13) 场分布设解为.

$$u(r, \theta) = R(r)e^{jN\theta} \tag{14}$$

引用展开式:

$$e^{jA\cos B} = \sum_{N=-\infty}^{\infty} j^N J_N(A) e^{jNB} \qquad (15)$$

将(14)、(15)式一起代入(13)式导出下列关系式:

$$\int_{\mathbf{0}}^{\mathbf{r_e}} dr_1 r_1 J_N(k r_1 r_2/b) R(r_1)$$

$$= (2\pi)^{-1} j^{-N} \mu \sigma R(r_2)$$
(16)

如果(16)式被满足,则解 $u(r, \theta) = R(r)e^{jN\theta}$ 中与 θ 有关的部分将在(13)式中消去。下面 定义几个物理量:

帯宽:
$$\Omega = kr_0/b$$
 (17)

空间带宽乘积:
$$c = r_0 \Omega = k r_0^2 / b$$
 (18)

新变量:
$$w = kr_2/b$$
 (19)

整理后(16)式成为:

$$\int_{0}^{r_{0}} r_{1} J_{N}(w r_{1}) R(r_{1}) dr_{1}$$

 $=(r_0/\Omega)j^{-(N+1)}e^{jkb}\sigma R(wr_0/\Omega)$ (20) 比较(20)式和圆扁长函数的定义式^[1]有下列 对应关系:

$$R(r) = \phi_{N,n}(r) \tag{21}$$

和
$$\sigma \equiv j^{2n+N+1}e^{-jkb}\lambda_{N,n}^{\frac{1}{2}}$$
 (22)

则模式的解为: $u_{N,n}(r,\theta) = \phi_{N,n}(r)e^{jN\theta}$

从(22)式可看出,每次反射的衍射损耗 恰是 $\lambda_{\infty,n}^{\frac{1}{2}}$,是空间带宽乘积c的函数。最小 衍射损耗对应着 $\lambda_{\infty}^{\frac{1}{2}}$ 的模式 $u_{\infty}(r,\theta)$ 。对于 $c \ge 10$ 的值, $\phi_{N,n}(r)$ 的表达式表明激光模式是拉盖尔多项式修正的高斯函数。最低阶模 $u_{00}(r,\theta)$ 的光斑大小是(定义在衰减为 $\frac{1}{e}$ 的基础上):

$$2(b\lambda/\pi)^{\frac{1}{2}} \tag{23}$$

推导时使用了(17)式。总之,由上面的处理可以看出,空间带宽乘积 c 所起的作用是很重要的,各种不同几何形状的激光器的空间带宽乘积 c 总是唯一地确定各种不同的几何形状的衍射损耗,即光学效率。通常 c 的带宽部分恰好是相干辐射的光学截止频率。

通过对方形镜和圆形镜共焦腔的分析,扁长函数较为理想的表征了腔内模式。

参考文献

- [1] E. Wolf; "Progress in Optics", 1971, IX.
- [2] C. Flammer; "Spheroidal Wave Functions", Stanford University Pres, Stanford, 1957.

(上接第12页)

行波放大运转,激光系统的可调谐宽度 主要取决于振荡器,运转电压15千伏时, R6G 乙醇溶液的可调谐宽度约350Å(图 4)。

综上所述,图1所示振荡-放大激光系统是匹配的,行波放大系数可达到4,说明已接近强讯号放大的增益饱和。若放大级再大,欲获更高功率的输出,就需采用注入放大技术,但可调谐宽度将受限于注入光强^[3],一

般比行波放大运转小得多。我们发展的过电 压火花隙同步放电电源是经济可靠的,由于 它简单而体积小,可使主放电电路安装在激 光系统主机里,和电源箱分开,供电用电缆联 接。

参 考 文 献

- 「1] 许祖彦等; 《物理》, 1982, 11, No.1, 49.
- [2] 汤晓等;《激光》,1979, 6, No. 9, 29.
- [3] 邓道群等; 《光学学报》, 1981, 1, No. 6, 531.