紫外光电离电子密度的探针测量

谢培良 王玉芝 张锡刚 王凤云 董景星 (中国科学院上海光学精密机械研究所)

陈哲人

(美国加州理工学院喷气推进实验室)

在许多横向放电气体激光器中,广泛地采用紫外预电离技术。为研究预电离效应,已经用微波干涉仪、光电子集电器等方法进行测试。但由于 n_e 的空间分辨率和 T_e 的时间响应率,在使用中受到一定的限制。我们用高压静电探针及Boxear测量,获得了气体混合物紫外预电离,电子密度、电子温度的时间关系。

实验所用的火花源为六对钨针。火花源上所加的电压为 35kV, 电容为 0.02μf, 脉冲重 复率 1~10Hz。一个加有扫描电压的同轴形探针与火花源距离可以调节。探针上信号经放大后,一路由示波器显示,一路由 Boxear 处理,输给 X-Y 记录仪,记录探针电流-电压曲线。

从实验中测得的探针伏-安曲线,由于工作在高气压,按照探针的伏-安曲线计算电子密度时不能用简单的探针理论,而采用了以碰撞为主的探针理论,由电子温度为麦克斯韦分布,得出了电子温度值。

实验还测量了电子密度 n_e 和电子温度 T_e 与时间的关系。由实验测得的结果得到紫外 预电离过程中 T_e 衰变比 n_e 来得缓慢。

实验还研究了 CO_2 气体对光电离的影响。发现在 1120 Å处, CO_2 混合气体中杂质的单光子电离是光预电 离的 主 要 过 程。实 验 还 得 到 在 1120 Å处 CO_2 的 平 均 吸 收 系 数 $\alpha=1.16$ cm⁻¹. atm⁻¹。

对于静止的预电离气体,发现 n_e 与预电离放电次数成指数衰减。工作 10^3 次后, n_e 少减一半左右,这是光化学生成物的作用造成的。

(0.57%)、对较大孔经的激光器(20 cm⁶的激活体验)。对 XeCl 我们将可优于 1%的效率。丰泉