用于高分辨光谱学的连续波可调谐色心激光器

F. K. Tittle (美国莱斯大学电气工程系)

可以在高功率、单频运转并在很宽的波长范围内调谐的色心激光器可望用于原子、分子 在近红外波段的线性及非线性光谱学。本文描述了连续波色心激光(CCL)分光计的设计考虑 及运转,讨论了色心激光器在光谱学中的很多应用,特别是自由基的高灵敏度、高分辨率吸 收光谱,及亚稳态氦原子的光泵实验。

在讨论分光计的设计时,重点将放在计算机控制及数据的获得,从长程观测及单频扫描、波长及频率标定及很方便的数据获得等观点来看,它们已证明能使得高分辨光谱的测量得到很大简化,线形腔及环形腔两者都被用于分光计,对于基于这两种腔的分光计设计都将作介绍,在文献中已报道了很多种色心晶体,但由于它们不同的激光特性及稳定性,只有少数几种能用于激光光谱学。特别有用的是可以用离子激光器或染料激光器泵浦的具有 $\mathbf{F}_{\mathbb{A}}(\mathbb{I})$ 心的 \mathbf{KCl} : Li 及 \mathbf{RbCl} : Li 晶体,或是最近的可用更有效的 \mathbf{Nd} : \mathbf{YAG} 激光泵浦的室温稳定的 $(\mathbf{F_2}^+)\mathbf{A}$ 晶体及缺陷扰动的 \mathbf{Tl} 原子 \mathbf{KCl} 晶体。

近十年来几种用来得到高分辨近红外光谱的新技术得到了发展,它们包括连续波可调谐激光源,例如色心激光、半导体激光、自旋反转喇曼激光、差频混合技术以及傅里叶变换分光计的重大改进。一个分光计的重要的特性包括分辨率、波长复盖范围、灵敏度、价格及通用性。对用激光器作光源的分光计来说,高的分辨率就要求频率很单纯,很稳定,高灵敏度要求有好的振幅稳定性及适当高的输出功率。对于所有的非线性光谱技术来说,输出功率是特别重要的,下表列出了目前感兴趣的一些连续波红光分光计的这些性能的比较。

红外	110	2:10	14	92	44	LL	**
417	')	LIE	TX.	75	D.)	LL.	ŦX

色心激光器		傅里叶变换 红外光谱仪	半导体激光器	差频	红外光栅光谱仪	
分辨率(cm ⁻¹)	0.0001	0.05-0.002	0.0001	0.0001	1.0-0.05	
光源类型	相干	不相干	相干	不相干	相干	
波长范围(μm)	0.8-3.6	0.5-100.0	1.0-12.0	1.0-5.0	1.0-10.0	
发散角	1-2mrad	N.A.	>10deg	1—5mrad	N. A.	
输出功率	1-500m W	N.A.	$1-100\mu W$	1-100µW	N. A.	
光源噪音	高	低	低	高	低	
价 格	高	很高	高	高	中等	

已有很多关于色心激光器光谱应用的报道,它们包括光一声、内调制荧光、光电流光谱、双共振光谱、分子光谱、多光子电离光谱、定标光谱及线形测量,我们自己以计算机控制的色心激光光谱仪进行的工作,集中在高分辨率、高灵敏度吸收光谱,特别是 OH, Br 原子,NO₂, C₂H, 以及甲醇和 NH₂OH 的 OH 基的光谱。与此不同的另一个应用是,调谐到 1.08 μ m 的色心激光器已被用于氦的亚稳态原子 He($_2$ ³S)的光学定向。