激光及金平面靶等离子体间相互作用实验研究

沈华忠

(中国科学院上海光学精密机械研究所)

实验使用的波长为 $1.06\mu m$, 脉宽(FWHM) $1\sim3 ns$, 功率密度 $1\times10^{14} \text{W/cm}^2\sim1\times10^{15}$ w/cm² 激光辐照 42µm 厚金平面靶。

实验测量结果如下: 当功率密度 I 在 $3 \times 10^{14} \sim 10^{15} \mathrm{W/cm^2}$ 时, Au 平面靶的吸收效率 η_{σ} (E_a/E_t)可用下式表示: 0.0117I+0.436。当激光脉冲宽度为 3ns 功率密度为 3×10¹⁴W/cm² 时, Au 靶 $\eta_a = 0.45$, $\eta_x = 0.4$, (E_x/E_t) 为 0.1 ± 0.028 ; E_t/E_t 为 30%, 快慢离子平均能量分 别为 30keV 和 900eV。

差分量热计测量结果表明, 当靶面功率密度为 $5 \times 10^{14} \text{W/cm}^2$ 时, $(E_i + E_x)$ 的角分布可 以近似地用 $f(\theta) = 21.8\cos^5\theta - 21.7\cos^4\theta + 5.7\cos^3\theta + 1.1\cos^2\theta$ 拟合。随着入射激光 功 率 密 度的增加。 $(E_i + E_z)$ 的角分布变锐。实验中测得的离子能量。X射线能量及散射光能量的角 分布实验数据支持这个结论。

电子能谱仪测得的高能电子($E_e > 50 \text{keV}$)能谱可以用麦克斯韦分布拟合。 T_e 和 I之间的 关系可以由 $T_e=2.9+10.1I$ 表示出。这里 T_e 和 I 的单位分别为 keV 及 10^{14} W/cm²。

另一方面。被射带线的纵向结构应当反映火花区的纵向情况(具有一个放大因子)。也就是电

· 502 ·