中国海光

第10卷 第2期

200 毫米磷酸盐钕玻璃片状放大器

郑玉霞 范滇元 余文炎 卓敦水

(中国科学院上海光机所)

提要:本文报导一台以磷酸盐钕玻璃作工作物质的高功率片状放大器,增益系数达 4.8% 厘米-1,增益不均匀性小于 13%。

A Nd-doped phosphate glass laser disk amplifier of 200 mm clear aperture

Zheng Yuxia, Fan Dianyuan, Yu Wenyan, Zhuo Dunshui

(Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract: This paper reports a high-power disk amplifier made of Nd doped phosphate glass. The gain coefficient is up to 4.8% cm⁻¹ and the gain uniformity is better than 13%.

一、引 言

激光系统的最大输出功率,取决于工作 物质所能承载的光功率密度和增益。由于非 线性自聚焦效应, 钕玻璃所能承受的平均功 率密度不超过(3~5)千兆瓦/厘米^{2*}。为了获 得高的激光输出功率, 激光系统的末级放大 器口径必须足够大。

大口径片状放大器的主要问题是光泵效 率较低和容易产生横向寄生振荡,从而限制 了放大能力。针对上述问题,我们在研制 200 毫米口径片状放大器时,选用了受激发射截 面大的磷酸盐钕玻璃作工作物质,并适当提 高钕的掺杂浓度。以 30 支高光效的 脉 冲 氙 灯泵浦,采用高电压低电容的泵浦方式;并以 引燃管内触发电路供电;在钕玻璃片的侧面 涂以包边涂层消除寄生振荡,这些措施收到 了显著的效果。

二、设计和参数选择

片状放大器的光泵效率较低,而且纵向 光程长度短,每级放大器的增益远比棒状放 大器低,装置复杂,投资大,在设计和选择参 数时,我们着重考虑的是工作物质、光泵系统 和抑制寄生振荡等三个方面。

1. 工作物质

III 型硅酸盐钕玻璃的 受激 截 面 较小 [(1.2~1.3)×10⁻²⁰ 厘米²],不适于作片 状 放大器的工作物质。磷酸盐钕玻璃的受激发

• 74 •

收稿日期: 1982年4月1日。

^{*} 不是材料的破坏阈值,是光束质量不变坏所允许的 平均负载。

射截面达 3.5×10-20 厘米2,可以预期它将有 较高的效率。我们在棒状放大器上作了对比 实验,结果表明,在光泵脉宽等于荧光寿命的 条件下,磷玻璃的增益系数是硅玻璃的 2 倍; 若采用相同的光泵脉宽(300 微 秒 左 右),那 么增益系数的比是 1.6~1.7。另外,磷玻璃 的非线性折射率比硅玻璃小,可以负载较高 的光强,因而是适于作片状放大器的优良工 作物质。

2. 光泵系统

钕玻璃片的体积很大,一片通光口径为 200 毫米、厚度为 40 毫米的片,玻璃体积达 2500 厘米³ 以上。为获得足够的增益,要求 有很高的泵浦能量。为此,我们以 30 支高光 效的脉冲氙灯围绕钕玻璃片进行泵浦,灯的 辐射效率大于 70%。总泵浦能量最大可达 360 千焦耳。

磷酸盐钕玻璃的荧光寿命(300微秒左 右)比硅酸盐玻璃几乎短一倍, 氙灯供电系统 的参数必须与之匹配, 否则光泵效率将显著 降低。为此, 我们选用低电容高电压的供电 方式, 两灯串联为一路, 每路电容量为 120微 法, 最高充电电压为 20 千伏, 此时光泵脉冲 的半宽度约为 450 微秒。

在高电压条件下,为了使供电系统安全 可靠地运行,除采取严格的绝缘措施外,我们 选用了引燃管内触发电路。图1是它的原理 图。这种电路在电容器充电后,氙灯两端仍 处于地电位,因而,不会发生自闪或外放电。 仅在引燃管导通瞬间,氙灯才触发放电。这 种供电方式确保了片状放大器在30支灯同 时点燃时能可靠地运行。

3. 抑制寄生振荡

由于片的横向尺寸大,容易产生寄生振 荡,它的产生有两种形式。

第一种是波长为1.054 微米的荧光, 经 片侧面多次全内反射引起的寄生振荡, 如图 2 所示。在此条件下, 片的侧面反射率为 *R*, 则寄生振荡的阈值条件为

 $Re^{nDB} = 1$

其中n为磷玻璃片的折射率, D 为片的长轴 长度, β 是平均增益系数。

第二种是由光泵不均匀引起的表面寄生 振荡,这一类寄生振荡是沿表面发生的。若 片侧面的正入射反射率为 R',沿表面的增益 系数为 β',那么,这类寄生振荡的阈值条件 为:

$$R'e^{D\beta'}=1$$

如果片的浓度不过高,光泵又比较均匀,第一 类寄生振荡更容易发生。

消除寄生振荡的方法主要是降低片侧面 的反射率。可以在片的侧面包一层与磷玻璃 折射率相近,而对1.054 微米具有强吸收的 材料,容易证明,片的增益系数β与片的长轴 D 乘积的临界值与包边玻璃的折射率有如下 的关系^[1]

$$\beta D = -\frac{n_1}{n_2} \ln \left\{ \left[\frac{(n_1^2 - n_2^2 + n_3^2)^{1/2} - n_1}{(n_1^2 - n_2^2 + n_3^2)^{1/2} + n_1} \right]^2 + T^{\frac{\partial n_2}{(n_1^2 - n_3^2 + n_3^2)^{1/2}} \right\}$$

其中 n₁、n₂、n₃ 分别是空气、钕玻璃和包边材料的折射率; T 是包边材料的单程透过率。根据要达到的增益系数及片的尺寸,由上式可以求出所需包边玻璃的折射率。包边以后片

• 75 •

侧面剩余的反射率 R 为

$$R = \left[\frac{(n_1^2 - n_2^2 + n_3^2)^{1/2} - n_1}{(n_1^2 - n_2^2 + n_3^2)^{1/2} + n_1}\right]^2 + T^{2n_2/(n_1^2 - n_3^2 + n_3^2)^{1/2}}$$

包边材料一般用低熔点的掺杂玻璃^[3], 它的效果较好,但工艺复杂。我们为了便于 判断寄生振荡抑制的效果,在实验中采用吸 光涂层来包边^[3],得到了预期的效果。

三、装置和实验结果

片状放大器的结构如图 3 照片。它由三 片磷玻璃片组成,每片的几何尺寸为200× 400×40毫米,按布氏角斜放,通光口径为 200毫米。为了保护磷玻璃片,在它外面套上 玻璃圆筒,两端面有密封窗口。在玻璃筒外 有 30 支 φ 17×1200毫米的氙灯排布在直径 为 340毫米的圆周上。考虑到泵浦效率,在 激光器的上下,即玻璃片的短轴方向没有排 布氙灯。两支氙灯串联为一路,共15路供 电。

图 3 片状放大器

测量增益的光路如图 4 所示。以磷玻璃 被动锁模振荡器为探测光源, 它输出 100 微 微秒脉宽的序列脉冲, 经分光板(3)取样, 由能量卡计(1)监测能量。输入片状放大器 D. A 的激光经往返二次放大后, 由卡计(2) 监测能量。

对磷玻璃片,我们分别对钕离子浓度为 1.2% Wt和2% Wt、包边和不包边等各种 情况进行了测量。实验结果见图5。图5的 曲线1是磷玻璃片掺钕离子浓度为1.2% Wt 时,增益系数与输入光泵能量密度的关系。由

于钕离子的浓度低,增益系数远没有达到我 们的要求。当钕离子的浓度增加到2% Wt时, 增益系数的变化曲线如图 5 的曲线 2。由于 磷玻璃片侧面没有消寄生振荡的措施,在 $\beta D \approx 1$ 时出现了增益饱和。当片的侧面有了 消寄生振荡的包边涂层以后,其增益系数的 曲线如图 5 的曲线 3。在 $\beta D = 2$ 时,仍未出 现增益饱和,实验结果与理论预期的数值完 全一样。

在这台装置上,我们进行了光泵效率系 数的测量,根据以往的工作^[4],我们假设增益 系数β与光泵能量密度W的关系满足下列 经验公式:

$\beta = KW^{A}$

其中K为片状放大器的光泵效率系数。测得 (下转第73页)

或模式增益(G)有可能随光子密度(N)增加 而增加(∂G∂N>0),而满足了自脉动的必要条 件。在这意义上,有可能从激光器的稳态束 腰宽随注入电流的变化规律判断其瞬态稳定 性或高速调制特性,并为进一步深入研究自 脉动机理提供一些重要依据。这些象散光束 的位置和束宽随电流变化规律的测量结果, 对为改善激光器与光纤耦合特性设计消象散 透镜系统是必需的^[5]。

参考文献

- [1] T. H. Zachos, J. C. Dyment; IEEE J. Quant. Electr., 1970, QE-6, 317-324.
- [2] D. D. Cook, F. R. Nash; J. Appl. Phys., 1975, 46, No. 4, 1660-1672.
- [3] P. A. Kirrby et al.; IEEE J. Quant. Electr., 1977, QE-13, No. 8, 705-719.
- [4] N. G. Basov; IEEE J. Quant. Electr., 1968, QE-4, No.4, 855-864.
- [5] C. Y. Chen, S. Wany; Appl. Phys. Lett., 1980, 37, No. 3, 253-260.

(上接第76页)

的结果 $K = 0.0013 \ \mathbb{R} \times \frac{2}{\mathbb{R}}$, $A \approx 1$, 即可 作近似的直线关系,这与设计的考虑基本一 致。

片状放大器的光泵效率系数,只有棒状 放大器的70%左右。

此外,我们还用阈值法测量了片状放大器径向增益的不均匀性,约为13%。这比通 光口径为 ϕ 70 毫米的棒状放大器还要好得 多。

- Laser-Fusion Program Semiannual Report. Januery-July, University of California / Livermore, 1973.
- [2] Laser-Fusion Program Semiannual Report, University of Culifornia/Livermore, 1976.
- [3] 卓敦水等;"片状放大器消寄生振荡的包边涂层", (待发表)。
- [4] 余文炎等; 《激光》, 1978, 7, No. 5~6, 5.