相干反斯托克斯喇曼散射光谱方法的化学应用研究

高 振 刘殿友 华 峦 郭 础*

(中国科学院化学研究所)

提要:本文介绍了采用宽带染料激光的相干反斯托克斯喇曼散射光谱技术。实验结果证明,利用这一技术可同时记录 CARS 和 CSRS 谱图,在吡啶的情况下,同时记录一条以上的喇曼谱线也是可能的。

Study of CARS application in chemistry

Gao Zheng, Liu Dianyou, Hua Luan, Guo Chu
(Institute of Chemistry, Academia Sinica)

Abstract: CARS technique with the broadband dye laser is described. With this technique, CARS as well as CSRS spectra can be obtained simultaneously and more than one Raman line of pyridine were recorded by each shot. The results reported show that this technique can be used to record Raman spectra of some organic molecules with nanosecond time resolution.

在通常的 CARS 实验中,一般均采用频率单一的 ω1 和 ω2 的激光作为激发光源,此时,为记录分子在某一频率范围内的喇曼散射光谱谱图,必须不断改变 ω1 或 ω2 频率而进行频率扫描,因此时间分辨率造成了严重限制。例如无法研究那些在化学上、生物学上具有极大重要意义的不稳定分子形态,以及分子在不同状态和不同空间的瞬间分布。

采用宽带激光作为 CARS 的激发光源之一, 无疑是克服上述缺点的一个重要途径**,并已有一些初步的实验探索结果报导^{口,37}。在这里,我们报导利用单次脉冲宽带CARS 方法在毫微秒数量级时间间隔内,同

时记录凝聚相有机物分子(苯和吡啶)不同喇曼散射光谱谱图的实验结果。

实验装置和方法考虑

单脉冲、宽带 CARS 的实验装置如图 1 所示。 激光脉冲由调 Q 条件下工作的 单模 Nd: YAG 激光器产生。 所产生的 1064 毫微 米激光脉冲的脉冲 宽度 为 7.0 毫微秒、谱线宽度 <1 厘米⁻¹,脉冲 功率 最高可达约

收稿日期: 1982年1月16日。

^{*} 张爱真同志参加了部分实验工作。

^{**} 最近,美国福特汽车公司基于类似的思想,采用宽带 CARS 方法,成功地对内燃机燃气的温度分布进行了毫秒 数量级的时间分辨测量^[3]。

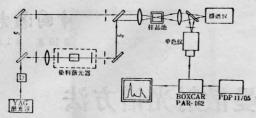


图 1 实验装置原理图

25 兆瓦。 激光脉冲经 KDP 晶体倍频, 得到 的532毫微米二次谐波脉冲,被分束器8分 为两个部分,其中一部分直接用于激发样品, 即作为ω1光脉冲;另一部分则用于抽运置于 非选择性谐振腔中的染料激光工作介质(通 常为若丹明 6G 的乙醇溶液),产生宽带激光 输出,后者直接用作为ω2光脉冲对样品进行 激发。 在采用若丹明 6G 的乙醇溶液作为宽 带激光CO。的激活介质时,所产生的激光脉 冲强度在 550.9~569.5 毫微米范围内 呈平 缓的连续分布。到达样品池的 ω1 和 ω2 光脉 冲强度,主要通过改变分束器的透过/反射比 和各自光程中的衰减情况予以控制。在一 般的情况下, ω1 和 ω2 的光强度分别控制在 50千瓦和10千瓦左右。 具有适当强度的 ω1 和ω2 光脉冲经消色差透镜 L1聚焦在样 品池中,两光束之间的夹角通过改变它们在 L_1 透镜上的间距予以调节。在 ω_1 和 ω_2 光 脉冲同时作用下,样品所产生的 CARS 信号 用透镜 L, 聚焦到 WPP-05 型光栅摄谱仪或 WDG-500-1型光栅单色仪的入射狭缝上。在 前一情况下, 所得信号的谱线可直接采用干 板摄谱, 也可用"两维光强分布电视扫描系 统"在"凯歌 4D9A 型"监视器屏幕上显示,而 各谱线的相对强度则用 Tektonix 7904 通用 示波器读出并用 Polariod 410 软片记录。在 后一情况通过单色仪依次选出不同波长的光 信号, 经光电倍增管(1P28型)接收后, 通过 PAR-162 型 Boxcar 取样平均器和 PDP-11 /05 电子计算机处理, 以求得准确的谱线线 型和峰值频率数值。 不言而喻, 后一种检测 方式必然要求用重复脉冲多次作用。 因而.

在这里我们仅是采用它使单脉冲宽带 CARS 所得谱图中某些参数进一步精确化而已。

这里我们必须强调指出,在宽带 CARS 实验中,一个应引起重视的问题是,如何保证在这一较宽的频率范围内可能出现的各个 CARS 谱线均能达到它们各自应达到的最佳信号强度。人们通常是采用位相匹配条件下工作的办法,使 CARS 信号具有最佳的强度。但是,在宽带 CARS 实验中,由于不同频率的光波在同一介质中的色散不相同,因而,在光束夹角相同时,要求宽带光束 ω₂ 中所有各有关频率的光波均满足位相匹配条件是不可能的。当偏离相位匹配条件大到一定程度时,则可能使一些本来应该出现的谱线消失。因此,实验时必须对ω₁和ω₂两束光的夹角θ,以及所用聚焦透镜的焦距选择得当。

实验结果和讨论

表1列出了在谐波 YAG 激光和若丹明 6G 宽带激光脉冲的作用下,液体苯的斯托克 斯和反斯托克斯光信号频率。在实验的其它 参数不变的条件下,将 ω1 或 ω2 光束切断,或 改变它到达样品池的光程,这些谱线均消失 不见。因此可以断言,产生这些谱线的光信 号仅是在 ω1、ω2 光束同时和有关分子相互 作用时产生的。

表 1 宽带 CARS 枝术记录的苯的散射谱线

ω 信号 (厘米 ⁻¹)	相应的 $\omega_1 - \omega_2$ (厘米 ⁻¹)	信号产生机理		
19790±2	993±1	CARS: $2\omega_1-\omega_2$		
20781±2	993±1	高次过程: 3ω1-2ω2		
16811±2	993±1	CSRS: $2\omega_2 - \omega_1$		
15820 ± 2	993±1	高次过程 3ω2-2ω1		

分析所得的光信号频率不难看出,这些光信号是由 $\omega_1 = 18797$ 厘米⁻³ 和界于 $18152 \sim 17559$ 厘米⁻¹之间 ω_2 辐射场和苯的 992 厘米⁻¹ 振动模相互作用而进行四波混频

过程产生的。 其中包括 频率为 2ω₁-ω₂ 的 CARS 信号以及频率为 2ω₂-ω₁ 的相干斯托克斯喇曼散射信号,其余相应于 3ω₁-2ω₂ 和 3ω₂-2ω₁ 的光信号则是由相应的高次过程产生的。 Chabay 等^[4] 采用可调频染料激光作为 ω₁ 和 ω₂ 激发光束而研究液体苯的 CARS 时,虽然也观察到 CSRS 以及高次过程所产生的信号,但 3ω₁-2ω₂ 和 3ω₂-2ω₁ 信号不能在同一实验条件下观察到。本文所报导的实验结果表明,采用宽带 CARS 技术完全有可能在可和激发脉冲的脉宽相比拟的时间间隔内(例如:~10-9 秒),同时记录分子的 CARS、CSRS 以及在斯托克斯和反斯托克斯侧的高次散射过程的谱图。

在液体吡啶的情况下,采用宽带 CARS 技术同样可记录它的 CARS、CSRS 以及高 次散射过程谱图,但吡啶可以给出更多的谱 线。例如,在它的 CARS 谱图中至少可以观 察到有四条散射谱线。它们的频率及相对强 度如图 2 所示,和已知的吡啶的喇曼散射光 谱谱线频率相对照,这四条谱线分别对应于 不同的吡啶分子振动模(表 2)。 这就向人们 揭示出了这样的一种可能性:利用宽带 CARS 技术还可以以毫微秒的时间分辨率监

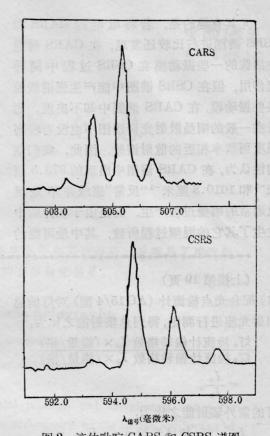


图 2 液体吡啶 CARS 和 CSRS 谱图 测分子中某些振动模的激发和驰豫过程,从 而为研究一些微观分子过程、鉴别和跟踪不

稳定分子形态的转化提供一种新的方法。

表 2 液体吡啶的 CARS 和 CSRS 谱线频率*

CARS		CSRS		已知的喇曼散射谱线(供对比参考)		
ω ₁ -ω ₂ (厘米 ⁻¹)	相对强度	ω ₁ -ω ₂ (厘米 ⁻¹)	相对强度	ω (厘米 ⁻¹)	相对强度	归属
951.0	10	951	5	942	~0	B ₁
in and the	Land Plants	973.5	10	980	<2	A_2
990.0	35	990.8	29	991	10	A ₁
_		1010.3	13	1007	~0	B ₁
1029.0	17	1030.3	10	1031	10	A ₁
1066.5	2	A.U.L. Land A.D.L. Land Land A.D.L. Land	1 (41 TH	1069	STATE OF THE PARTY	A ₁

^{*} 谱线频率及相对强度均经电子计算机处理而求得。

尤其有趣的是,若将吡啶的 CARS 和 CSRS 谱图进行比较还发现,在 CARS 过程中活泼的一些振动模在 CSRS 过程中同样起作用,但在 CSRS 谱图中能产生强谱线的某些振动模,在 CARS 谱图中却不出现。而且在一般的喇曼散射光谱谱图中也没有较高强度而频率相近的散射谱线,因此,我们倾向性认为,在 CARS 谱图中出现的 973.5厘米-1和1010.3厘米-1"反常"谱线并不是通过通常的喇曼过程产生,而是由于在介质中发生了其它的混频过程所致,其中最可能的

是双光子共振四波混频过程。

对美国纽约市立大学 J. R. Lombardi 教授的讨论和中国科学院安徽光机所蔡小鸿 同志给予的帮助表示深切的谢意。

参考文献

- [1] W. B. Roh et al.; Appl. Phys. Lett., 1976, 29, 174.
- [2] A. Lau et al.; Opt. Commun., 1977, 21, 399; W.
 Werncke et al.; Chem. Phys. Lett., 1979, 61, 105.
- [3] D. Klick et al.; Appl. Opt., 1981, 20, 1178.
- [4] I. Chabay et al.; Appl. Phys. Lett., 1976, 28, 27.

(上接第19页)

口)配合光点检流计(AC15/4型)对灯的总辐射光能进行测定,得到总辐射能之比为:

灯。检流计偏转格数 $I_a \times (能量/格)$ 灯。检流计偏转格数 $I_b \times (能量/格)$

$$=\frac{I_a}{I_b}$$

灯的紫外辐射能之比为:

$$\frac{I_a}{I_b} \times \frac{\prod_a 紫外光效 \eta_a}{\prod_b \lesssim M \times M \times M \times M} = \frac{I_a}{I_b} \times \frac{\eta_a}{\eta_b}$$
。

由于OMA-2系统探测头线性度为±2%,再考虑到闪光灯闪光不重复性 <±5%,故实验测量精度为测量值的±7%。 我们所测脉冲灯的紫外光谱效率在13~ 17%左右,因此实验所得各效率的数据平均误差约为±1.0%。

四、实验结果与讨论

1. 放电电压对光输出的影响

改变脉冲氙灯的放电电压测定其光谱分 布和相对光谱效率,结果列于表1和图1。

实验结果表明,随着放电电压升高,脉冲 氙灯的辐射总光能、紫外辐射能、紫外光谱效 率及对 F₂ 吸收有用光效等都随之提高。 这和文献[1~4]用"照相法"、"一般光电法"所得实验结果规律相符。在我们实验条件下,还没有出现饱和效应。

2. 充气压力对光输出的影响

对充 Xe 压分别为 100 托、200 托 的脉冲灯进行了测试,结果见表 2 和图 2。

实验结果可以看出,充氙气压力从100 托提高到200托,辐射总光能、紫外辐射能、紫外光谱效率、对F₂有用吸收光谱效率等都 随之提高。和文献[3~5]用一般测试方法所 得实验结果规律相符。

实验结果表明:随放电电压和充氙压力的增加,脉冲氙灯的紫外(2500~3500Å)光谱效率从13%提高到17%左右,紫外总辐射能量也显著提高。因此为使脉冲氙灯紫外辐射增加,用高压放电、高充气压力是有利的。

本工作在实验 过程 中得到了林从敬、孙发信、吴树源、徐文刚等同志的协助;在 OMA-2 仪器的使用上得到钱嘉猷、崔铁基等同志的协助;在对曲线进行计算机拟合方面得到丁吉山同志的协助,在此深表感谢。

参考文献

- [1] M. A. Gusinow; J. Appl. Phys., 1975, 46, No. 11, 4847.
- [2] T. Efthymiopoulos, B. K. Garside; Appl. Opt., 1977, 16, No. 1, 70~76.
- [3] Yu. G. Basov, S. A. Boldyrer et al.; Sov. J. Quant. Electr., 1975, 5, No. 8, 1009.
- 「4] 中国科学院上海光机所,《脉冲氙灯》。
- [5] M. A. Gusinow; IEEE J. Quant. Electr., 1975,QE-11, No. 12, 929.