音谱均方根幅值均有成倍的抑制作用。 谱在极低频 率处有极大值, 高于 100 千赫时幅度迅速接近量子 噪音极限。此外弛豫振荡衰减常数α为^[1]:

$$a = \frac{1}{2} \left(\frac{1}{\tau} + \frac{1}{\tau_s} \right)$$

式中 7 为自发衰减率, 7.为受激衰减率。在我 们要 求的多模输出工作范围内,估算的弛豫振荡频率约 82~51 千赫。实测噪音谱的弛豫峰跟估算相符。经 测试可知,造成输出扰动的物理因素虽然众多,但影 响起伏的主要因素还是小于 10 赫的极低频率 以及 弛豫振荡频率。特别是虽然弛豫振荡是可线性化的 小扰动,但当激光器受到外界冲击振动时,衰减弛豫 振荡会以尖峰方式输出,这种大扰动具有高度 非线 性特征。实验中并对泵浦氪灯进行监控,泵浦源剩 余纹波引起的扰动不明显,因此氪灯中等离子体不 稳定性对起伏影响不大。

我们进一步用无反馈控制高压触发连续电源作 了对比试验。该电源性能指标为:电压漂移2× 10⁻²;电流漂移3×10⁻²;纹波系数10⁻³。激光器装 置同前,测试是在高于阈值电流3安时进行的。无 倍频时嗓音起伏为±42~±45%,温度匹配时降为 ≲±10%。工作40分钟,连续电源慢漂移电流下降 0.5 安以及电压下降5 伏时,嗓音起伏随时间变化 如图**7**所示。同时,温度控制偏离也类似于图5的 曲线。

图7 无反馈控制时高压触发源噪音的变化

综上所述,我们看到无倍频器高于阈值工作时, 虽然短期平均起伏量也许不大,但长期情况就很差, 单纯提高泵浦源精度难以克服其它物理原因造成的 激光扰动。可见,若简易泵浦源采取电流反馈控制, 而工作台采用隔震垫避免机械振动引起低频损耗起 伏,就很有希望采取倍频稳定方案达到输出起伏为 百分之几的精度。

本文曾蒙<u>张绶庆</u>先生悉心指导并审阅,提出了 许多重要意见,衷怀铭刻。

Ż

尌

- [2] C. J. Kennedy; USP, No. 4044316.
- [3] C. J. Kennedy, J. D. Barry; IEEE J. Quant. Electr., 1974, QE-10, 596.

(上海市激光技术研究所 吕建华 蒋家麟 刘 伟 程关铝 魏洁云 朱三又 上海市硅酸盐所 吴惠法 徐惠德 1981年7月7日 收稿)

Ga1-xAlxAs-GaAs DH 激光器的质子轰击研究

Abstract: New technologies using proton bombardment to form $Ga_{1-x}Al_x AsGaAs DH$ lasers of stripe-geometry are described and our experimental results regiven.

质子轰击条形 DH 激光器,通常我们采用常规 的液相外延方法来制造。一般在 n-GaAs 衬底材料 上生长 Ga1-,Al,As-GaAs 五层 DH 结构。 n 面衬 底上的接触电极用 AuGeNi 合 金 化 形成; p-GaAs 顶层上则先扩散锌,蒸发 Cr-Au。对质子束的掩蔽 用和外延片紧贴的钨丝网作15 微米、12 微米条宽 或光刻方法形成6 微米窄条电镀 Au 作为 掩蔽。我 们用低能质子轰击来形成隔离条形。激光器谐振腔 两侧便由轰击形成的高阻层来限定;激光器上、下面 则由 Ga1-_xAl_*As 限定。器件结构如图 1。 我们研制的质子轰击条形 DH 激光器性能实验 结果列于表 1~4 中。①由表 1 可见 80-88*、80-91* 两个外延片所作的器件, 浅轰击比深轰击的阈值 低。这两片的工艺为浅轰击后作欧姆接触。但是, 表 4 中 80-54* 先作欧姆接触后轰击仍是 浅轰击 阈 值较低。②由表 2 可以看到同一外延片浅轰击, 而作 欧姆接触在轰击前后不同条件下进行。两种情况器 件都有较低的阈值。串联电阻也接近 3~7 欧姆,而 后轰击的器件阈值更低些。③表4中80-29*、80-41* 在复旦大学作深轰击与 ② 中所讲情况有所不同。 同样为深轰击时,先轰击后作欧姆接触比先作 欧姆 接触后轰击的器件有较低的阈值。前者工艺相当于 轰击后进行了一次退火,因而消除了深轰击而产生 的条形激活区两侧的缺陷。所以深轰击时,采用先

图1 Ga1-xAlxAs-GaAs质子轰击条形 DH 激光器腐蚀截面图

80-88# 先浅轰击后作欧姆接触**	编号	116	78	46	209	145	134	156	133	96	47	158	208
	I _{th} (毫安)	100	90	超	70	荧	90	100	100	150	80	80	110
	R_s (欧姆)			4.5	4				1	1000		19	14
深轰击之前作欧姆接触*	编号	72	18	126	92	123	71	124	135	14	75	66	
	Ith(毫安)	95	荧	120	荧	炭	荧	荧	荧	荧	荧	荧	
	R_s (欧姆)		81				20114	Play Bri					
	编号	43	3	77	92	31	11	13	89	24	79	SEL 13	14000
80-91#	I _{th} (毫安)	70	50	200	70	65	80	100	80	55	70	1000 M	01
元戊亥击户作政姆按照	R_s (欧姆)	4		3	.04	RANG	E	32251	and the			19.18	词道
一般意义 有点的身份	编号	23	-44	132	38	34	31	50	49	62			同國省
深轰击之前作欧姆接触*	Ith(毫安)	90	150	100	100	120	75	荧	75	130	-ka mis	2020	141 ×
	R_s (欧姆)	6	7	1	10	10	6				1212	No. 10	2.000

表1 浅轰击与深轰击条形 DH 激光器比较

* D=4.0×1015H+/厘米2,能量 E≈400 千电子伏;

** D=3.4×1015日+/厘米2, E88=300千电子伏, E91=280千电子伏

表2 80-102# 浅轰击**时,先轰击与后轰击(先欧姆接触即常规工艺)比较

The Mile shares	编号	46	106	133	101	134	117	78	3	88	115	43	116	13	18
先轰击后作接触	Ith(毫安)	120	100	80	150	110-	110	通	100	120	100	95	超	85	150
	R_s (欧姆)	21	12.2		6	10.0	6			5					3
	编号	136	122	127	48	116	87	47	84	111	85	156	158	110	81
常规	Ith(毫安)	60	70	70	80	荧	90	85	85	荧	无	65	无	90	70
何不,上編加出 135.8	R_s (欧姆)	7	法法	自己的	5	1 2/	saĐ-c	4	12.93	24	(Agl)	14. H	UT(SI)	6	社會

** D=3.4×1015日+/厘米2, E=280千电子伏

-	未退火	超	100	125	115↓	100	90	100	160↓	荧光	荧光	超	135	.100↓
1 _协 (喜空)	镀薄 Au(p、n) 退火	160	通	170	115	150	170	荧	150	150	超	超	荧	100
(毛女)	退火	115	无	100	120	荧	115	荧	150	荧	100	100	210	90
nemili	未退火	2.5	ionau	5	2.5	3	3	2	3	3	aovi	A STREAM	3.5	3
Eig (Rhr HEL)	镀薄 Au(p、n) 退火	in star	t brie	(not)	diola	2.3	aurei	00.0	solge	3	Insite	n'l	rabon	1
(127, 217)	退火	2.5			3			(acer	sala	eilas	hittor	2 ni	Siza	5 ¹

表3 80-33# 先轰击(浅)**后作欧姆接触退火与未退火比较

** D=3.5×10¹⁵H+/厘米2, E≈350~400 千电子伏

表 4 先轰击后作欧姆接触与常规后轰击比较

	片子编号	80-29	80-41	80–54	80-67	80-102
器件阈值	先轰击	125~150	~250	~150	100~170	80~150
(毫安)	常规	~140	不受激	90~100	75~100	60~90
串联电阻	先轰击	4~5	~4	3~7	3~4	5~6
(欧姆)	常规	6~7	~4	~12	2~4.5	4~7

轰击后作欧姆接触为好。④表3是80-33* 浅轰击 未退火与退火比较,后者阈值有所上升,但不十分明 显,相对的受激器件数量也少些。未退火器件阈值 90~160毫安; p、n两面镀薄 Au后退火的器件阈值 100~170毫安;直接退火的90~210毫安。以上三 种条件的器件串联电阻都比较低(2~3.5欧姆)。因 此,我们认为浅轰击可以不退火。由于质子注入深 度不到激活层,故由轰击而产生的缺陷对器件性能 基本没影响。

在质子轰击条形 DH 激光器制造中, 一般地都 是先作好欧姆接触之后去质子轰击。在深轰击的情 况下,需要退火,再加之轰击前合金化要进行两次热 处理。这样对器件结的特性易受影响。所以,我们采用 了先轰击后作欧姆接触新工艺。实验步骤:外延片先 Zn 扩散、轰击、作欧姆接触、装管、测试。 轰击前外 延片不减薄,便于轰击后作好清洁处理,轰击后作欧 姆接触合金化;可以使退火工艺和合金化一起完成。 实验条件: ① p 面 GaAs 层(已扩 Zn)上, 蒸发 Cr-Au; n 面蒸发 AuGeNi 合金。高真空(高于 1×10-5 托)系统中470°C合金化5分钟。多数外延片表面 条区可见。与常规工艺(同一外延片)器件特性(如 Ith、L-I特性曲线)的线性作比较都有较好的结果。 ②先作n面合金化,470°C5分钟(高于1×10-5托 的高真空系统内进行)。然后 p 面蒸发 Cr-Au, 350℃ 高真空系统内热处理5分钟。另外,我们还对浅轰

击作了改进。实验条件为先作好 n 面欧姆接触然后 轰击,蒸发 Cr-Au 作 p 面欧姆接触,高真空系统内 350℃ 热处理 5 分钟。

我们发现注入质子后的外延片表面往往有沾 污,这样使得电极制作等发生困难。除了某些其他 工艺造成外,我们对轰击本身的问题也注意解决。首 先,要求在一定高的真空条件下(高于2×10⁻⁵托) 引束流轰击。采用浅轰击,以便降低质子能量。另 外,减少质子束流,适当地加长轰击时间也能保证所 要求的剂量。适当地降低质子剂量等都可以减少轰 击过程中引起的片子发热。

本工作质子轰击由复旦大学加速器实验室,上 海科技大学倍加器实验室帮助完成。我们室一些同 志也给予了大力支持,在此表示感谢。

参考文献

- [1] J. C. Dyment et al.; J. Appl. Phys., 1973, 44, No. 1, 207.
- [2] P. N. Favennec, D. Diguet; Appl. Phys. Lett., 1973, 23, 546.
- [3] R. W. Dixon, W. B. Joyce; The Bell System Technical Journal, 1980, 59, No. 6, 975.

(中国科学院上海光机所 张莲英 张银女 1981 年 2 月 26 日收稿)

· 111 ·