# 掺镁 LiNbO3 参量 振荡器

实验方块图如图 1 所示,采用重复 率 0.532 微 米激光泵浦,平腔结构,双谐振荡,共线 I 类相位匹 配,即 k<sub>p</sub>=k<sub>e</sub><sup>0</sup>+k<sub>e</sub><sup>0</sup>。



### 图1 光参量振荡器实验系统示意图

1-1.064µ 全反镜; 2-双 45°LiNbO3 调 Q 晶 体; 3-YAG 振荡棒; 4-平板 K<sub>0</sub> 玻璃腔片; 5-YAG 放大棒; 6-倍频晶体(掺镁 LiNbO3); 7-倍频恒温槽; 8、9-分光棱镜; 10-1 米聚 焦透镜; 11-参量振荡晶体(掺镁 LiNbO3); 12-光参量振荡器恒温槽; 13-参量振荡腔片 (宽带膜片); 14-红外滤光片(CdTe); 15-WDS-J<sub>2</sub>型单色仪; 16-红外光电变象管(42BX101 型)(虚线箭头表示晶体的光轴方向)

#### (1) 泵浦源

重复率 YAG:Nd<sup>3+</sup> 激光的二次谐波 0.532 微 米作为参量振荡的泵浦源,其能量一般为 50 毫焦 耳,脉宽 25 毫微秒,全发散角 2.5 毫弧度。

(2) 振荡腔(晶体和腔片)

选择 LiNbO<sub>8</sub> 晶体的主要原因是由于它对1.064 微米激光倍频和 0.532 微米泵浦的参量振荡都能获 得 9 0°相位匹配。而掺镁的主要作用是为了获得 90°匹配寻找到适用的匹配温度<sup>[1,2]</sup>。此外,根据我 们的实验结果,认为掺镁还有利于提高转换效率和 抗光损伤。

因为晶体长度 l 的平方与参放增益成正比,而 与振荡阈值成反比,故 l 越长越好,并且对于 90° 匹配,无孔径效应,l 不受限制,但因 LiNbO<sub>3</sub> 的折射 率均匀性差,l 不宜过长。我们根据对不同长度 LiNbO<sub>3</sub> 的倍频实验,取 l=11~15 毫米。振荡晶体 的平行度小于 20 秒,平面度  $N \leq 0.5$ ,  $4N \leq 0.2$ 。

K<sub>9</sub>玻璃做腔片,宽带膜二组(0.86~1.1 微米, 1~1.3 微米),反射率 R≥98%, 1.064 微米的透过 率 T≥90%。振荡腔长约 17 毫米,腔平行度小于10 秒。整个腔放入恒温槽内,恒温控制在 ±0.02℃。

用 WDS-2 型单色仪和 42BX101 型红外变象 管测得参量振荡输出波长调谐曲线如图 2 所示,当 温度自 43~101°C 时,相应波长为 0.89~1.2 微米。 据文献[3,4]报导,0.532 微米泵浦的参量振荡器的 最大调谐范围目前为 0.62~3.6 微米,因本实验受 宽带膜和探测器的限制,只能达到 1.2 微米。

参量振荡输出能量为 0.36 毫焦耳脉冲, 能量转 换效率是 1%, 如果考虑到 CdTe 的透过率只有 40%,则能量转换效率为 2.5%。 输出能量 0.9 毫 焦耳,脉宽 16 毫微秒。参量振荡光斑如图 3 所示。



图 2 LiNbOg 光参量振荡器的调谐曲线 有实线表示实验平滑曲线; 点划线表示受接收器 限制的波长延伸部分; 虚线表示理论计算曲线



图 2 中实线是实验得到的调谐曲线,虚线是按 照  $4\omega = \eta (4T)^{1/2}$  计算的曲线, $\eta = 4.61 \times 10^{18}$  秒<sup>-1</sup>

· 48 ·

(°C)<sup>-1/2</sup>。由图可知,在简并振荡点附近,实验曲线和理论曲线很吻合,但在远离简并点处有所差异,认为这是由于 $\eta$ 值随温度变化,而略有不同,从实验获得的整个调谐曲线中,我们对 $\eta$ 取平均值且为4.5×10<sup>13</sup> 秒<sup>-1</sup>(°C)<sup>-1/2</sup>。

从实验中还发现,离开简并点越远,重现性越 好,例如自0.97 微米以后,二次实验获得的调谐曲 线完全重合,然而在简并点附近不太吻合,这是因 为在简并点附近的调谐速率快,对群集效应、波矢量 失配,机械振动、温度漂移等不稳定因素特别灵敏。

我们对 LiIO<sub>3</sub> 角度调谐和 LiNbO<sub>3</sub> 角度调谐的 二种参量振荡器也进行了实验,当泵浦光特性和振 荡腔参数相同条件下,LiNbO<sub>3</sub> 温度调谐的阈值低, LiIO<sub>3</sub> 角度调谐的阈值高,同一块 LiNbO<sub>3</sub> 分别作温 度调谐和角度调谐时,后者阈值高。这些实验结果 是符合参量振荡理论的。

### 参考文献

- F. Zernike et al.; «Applied Nonlinear Optics», 1973.
- [2] 徐良瑛等;《激光》, 1978, 5, No. 5~6, 127.
- [3] С. А. Ахманов; Кван Электр., 1977, 4, No. 10, 2225.
- [4] Y. Fanaka et al.; Opt. Commun., 1978, 25, 273~ 276.

(中国科学院安徽光机所 潘汉忠 崔益本

秦树军 吴路生 郭启霞 王长山 程玉正)

# 大功率 CO₂ 激光 CFVC 型能量计

我们选择具有高强度和吸收 系数 适中的 CaF<sub>2</sub> 单晶片做吸收体。为了减少厚度,改善光吸收的均 匀性,采用一面涂金的方法实现双光程吸收,使仅有 0.5 厘米厚的 CaF<sub>2</sub> 晶片吸收入射光达 98.44%。结 构如图 1 所示,主要结构参数列于表 1。

定标和实际测量表明, CFVC 卡计具有良好的



均匀性,即使光斑小至0.5厘米,大到8厘米,都具 有接近的响应曲线和灵敏度。光电标定的灵敏度 CFVC-I型为24.2 微伏/焦耳±4%,CFVC-II型 为25.60 微伏/焦耳±3.2%,可探测功率密度达 10°瓦/厘米<sup>2</sup>。



49

图1 CFVC卡计结构及照片

表1 CFVC卡计主要结构参数

| 型  | 号                      | 参      |            |           |          | 数        |       |          |
|----|------------------------|--------|------------|-----------|----------|----------|-------|----------|
|    |                        | 直径(厘米) | 厚度(厘米)     | 质量(克)     | 热偶内阻(欧姆) | 热偶对数     | 加热丝电阻 | 通光孔径(厘米) |
| I  | ${f CaF_2}$ Cu         | 9<br>9 | 0.5<br>0.1 | 114<br>54 | 212      | 48<br>10 | 63.36 | 8.0      |
| II | CaF <sub>2</sub><br>Cu | 9<br>9 | 0.5<br>0.1 | 114<br>54 | 158      | 31       | 109.6 | 8.0      |
|    | - , t .                |        | (中国科学)     | 完上海光机     | 所庄斗南陆    | 载通 李兰    | 英 王泽民 | 高杰)      |