有关氦-氖激光器性能的几个问题

怀宁工

(福建师范大学物理系)

如何改善氦-氖激光器的性能,提高使用寿命与稳定性是急需解决的重要课题。本文试图从这个角度出发,在剖析影响激光器性能的一些主要因素的基础上,对整个器件的结构设计和研制技术作相应的考虑,以利于性能的改善。

气体清除的影响

气体清除效应是密封的放电管中气体放 电的一种固有现象。在气体激光器运行期 间,由于气体清除的影响,将使管内气体压强 降低和气体组分发生变化。表现出激光输出 功率的跌落和频率漂移,甚至停止激光振荡。

放电管内气体的损失,一方面是由于阴 极溅射导致管内氦氖压强的降低, 选择合适 材料的冷阴极可以减弱或延缓但不能完全消 除这个效应。管内压强的降低引起腔内折射 率改变和纯机械长度的缩短[1]。实验指出: 在一个采用铍冷阴极(内径23毫米,长120 毫米)的激光管(氦氖分压强比5:1,总压强3 托, 气体容量 100 厘米3)中, 在放电电流为 20 毫安时测得的管内总压强随时间的变化曲线 示于图 1。从这些结果可推测一只设计合宜 的激光器在几千小时内由气体清除引起的频 率漂移将小于20兆赫。管内气体的另一损 失, 是由于气体的扩散效应侵入石英或玻璃 管壁内部,甚至逸出管外,而且随着管壳温度 的升高, 氦气渗透过管壳逸出愈甚。例如, 在 一只石英放电管中充以2托压强的氦氖混合

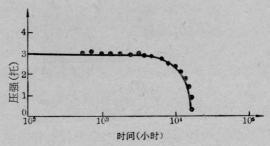


图1 氦-氖气体放电管中压强随时间变化曲线

气体,加热石英管至300℃维持5天,到第5天末了发现气压下降为原来的一半,这主要是氦扩散穿过管壳逸出。此外,在气体清除过程中还发现各种气体的清除率是不相同的。在氦氖混合物中,开始一段时间内氖分压强急剧下降,随后很快就趋于稳定,而氦气的清除则成了主要因素^[2]。为便于观测清除过程,实验中采用小面积电极,温度高至90~100℃。其测量计算结果示于图2。

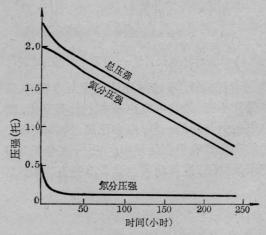


图2 清除过程中氦、氖和总压强的变化曲线 收稿日期: 1978年7月6日。

在放电管中气体清除是个复杂的物理现象,它与放电管尺寸、放电电流、管壁历史、氦 氖气体的分压比以及总压强等有关,这方面仍需深入研究。然而,初步的实验表明:要使气体清除影响降至最小,必须采用足够大的阴极工作面积,尽可能降低管壳工作温度。

气体杂质的影响

氦-氖激光器中都含有少量气体杂质,管壁和阴极等管内零件的放气是构成杂质气体的主要来源。另外,在买来的氦氖气体中有时还夹杂少量的氚气,由于它的电离电位较亚稳态的氦和氖为低,通过潘宁反应对激光作用有着深奥的影响。然而,一般以氢、氧和水气为最常见。这些气体的浓度对激光输出功率和频率漂移有着不同程度的影响^[11],实验结果示于图3、4。从图中可知,氢气对激光输出功率与频率漂移影响最严重,氧气、水蒸气次之。可是当它们的分压强低于10⁻⁴ 托时,就几乎不再影响激光作用了。因此,在研制过程中必须对管内零件进行仔细彻底的

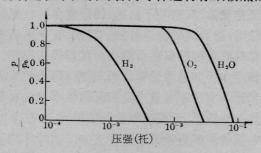


图 3 相对激光输出功率与杂质 气体分压强的关系

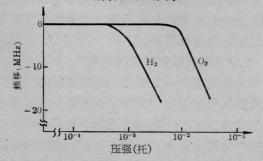


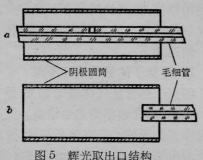
图 4 频率漂移与杂质气体分压强的关系

清洗和除气,维持足够高的真空度,同时又避免管内其它污染源的存在,防止在激光器运行期间杂质气体逸出造成污染。在管内装置消气剂是个简易有效的方法。

反射镜介质膜层的老化与损伤

激光器工作时由辉光放电产生的离子、 亚稳态原子以及远紫外线辐射都能够使反射 镜介质膜层损伤, 这是造成功率跌落与频率 漂移的又一因素。实验指出[2]. 激光管在正 常运行期间反射镜介质膜层的老化主要是远 紫外线辐射穿透膜层引起折射率改变的结 果。然而,介质膜层材料硫化锌-氟化镁都是 稳定的化合物,看来膜层的损伤主要是由吸 附在膜层中别的物质分子(如扩散泵油蒸气) 间接引起的。例如在超净真空条件下镀制的 一只13层硫化锌-氟化镁介质膜片,在离放 电辉光1~2厘米处,其工作寿命是非常长 的。即使直接暴露在辉光照射下100小时, 反射率的减小亦不超过0.1%。因此,要防止 膜层损伤,关键在于改善镀膜条件,防止膜层 污染。 其次, 在设计激光器时要尽量使反射 镜片与放电辉光之间距离远些。同时, 还应 避免在研制过程中及放电期间杂质分子披复 于介质膜层表面造成污染。

激光管设计与制造技术的一些考虑


这里我们不想对氦-氖激光管作系统的设计计算,而只是基于上面的分析,为改进激光器的性能,提高使用寿命和稳定度,对整个激光管的结构设计和制造工艺作相应的考虑。简述如下:

1. 等离子体管的设计考虑

等离子体管是气体激光器的最主要部件,它提供激光频率的光学增益。氦-氖激光管通常工作于辉光放电的正柱区,因而,整个管子的电流电压特性几乎由正柱区所确定。

为得到可靠稳定的工作, 管壳的温度应尽可 能低,并且有足够大的气体容量。 在满足最 佳输出功率的条件下, 往往希望输入放电功 率愈小愈好。

阴极: 对于工作电流小于 30 毫安的小功 率氦-氖激光器,几乎都采用冷阴极。为使阴 极处在正常辉光区域内工作, 电流密度必须 选得足够低。为避免管子在正常运行期间因 溅射或放气引起气体污染而损坏, 冷阴极的 设计是至关重要的。一般采用圆筒形结构,其 设计电流密度选在0.1毫安/厘米2以下。此 外,还应着重指出:在任何情况下都应该把气 体放电辉光引向阴极的适宜部分。阴极圆筒 内放电辉光取出口的形状与位置、阴极直径 大小对阴极圆筒内辉光的长度和阴极表面电 流密度分布有很大影响。例如放电辉光取出 口在冷阴极中部的毛细管上(见图 5a), 采用 "分段法"测量阴极表面电流密度分布指 出[3]: 在放电辉光取出口处, 电流密度最大。 随着阴极圆筒内径的增大, 电流密度分布愈 平坦。实验表明, 阴极圆筒内径小于20 毫米 时,用增加阴极长度效果不大,一般阴极圆筒 内径以大于20毫米为宜。对于不同取出口 形状和结构, 电流密度分布亦有很大差别。 如果放电辉光取出口结构如图 56 所示的情 况[4], 对于给定的阴极圆筒内径, 就要有一最 大的阴极长度来保证放电辉光深入阴极内 部,而不致于逸出阴极外面。电流愈大,放电 辉光深入阴极内部愈甚(见图6)。因此,在 阴极圆筒内径和电流强度给定的情况下, 阴 极长度应这样来选择: 即考虑激光器寿命过

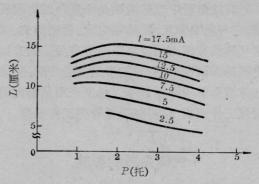


图 6 阴极辉光长度与总压强 P 的关系 (φ23毫米, He: Ne=5:1)

程中,由于气体的污染,激光器最佳工作电流 会增加,致使放电辉光更深入阴极内部。所以, 阴极的实际长度要选得比设计长度要长些。

冷阴极材料一般选用抗溅射性能好的铝 或铝镁合金等。足够大的阴极表面积, 使它 在较低的温度下运行, 有利于激光器的稳定 和寿命的提高。

等离子体管结构: 为减弱对温度梯度的 敏感性,现在大多数小功率氦-氖激光管都采 用双层结构, 即把硼硅型玻璃毛细管固定在 管壳内部。较大尺寸的管壳既可储存充裕的 工作气体,又有利于散热,使管壳保持较低的 温度,防止氦气渗透外溢。其次,管壳温度变 化对反射镜的偏移影响小, 可以提高稳定性 和寿命。如果激光管较长, 菲涅耳数较小, 激 光管输出功率对放电毛细管的微小弯曲就变 得十分敏感。为使毛细管保持平直,往往采取 中部或端部装置可调的管支架, 这时等离子 体管就不能做成双层结构。 然而, 为得到良 好的稳定性和工作寿命, 应当对毛细管进行 强迫冷却或别的散热措施, 使管壁温度不超 过设计容许值范围。

2. 提高反射镜片的质量

涂复具有一定频宽和反射系数的多层介 质膜反射镜, 这在光学工业上已是相当成熟 的技术。 然而, 要满意地用于长寿命的内腔 式气体激光器中, 还必须具有耐高温和抗紫 外线辐射的能力, 要能在真空条件下经受住

3. 改进贴膜技术,采用新的结构设计

目前在生产各种常用的气体激光器时, 都是采用环氧树脂之类的有机粘合剂将谐振 腔镜片粘接在管体两端, 这些粘合剂的机械 强度和真空密封性能都达不到一只长寿命、 高稳定度的激光器的要求。此外,它们还经 受不住高于200℃以上的高温冲击,因而严 重妨碍了激光管在真空条件下进行长时间的 高温烘烤与彻底除气。 再者, 这些有机粘合 剂本身即使在低于200℃下烘烤时或是在以 后激光器正常运行期间,始终是气体的污染 来源之一。 因此, 要进一步改善激光器的性 能,就必须抛弃有机粘合剂,采用新的封接技 术(低熔点玻璃封接、静电封接、铟密封技术 和光胶合技术等)进行贴膜,制成全密封的激 光器。另一途径是改进激光器结构设计[5,6], 不采用任何有机粘合剂, 而只采用电真空器 件生产中典型的封接技术, 即通过玻璃与玻 璃和玻璃与金属相封接而制成全玻璃密封的 激光器。这方面的工作是很有前途的。本文 因篇幅所限,不再进行讨论。

4. 关于制造工艺的几点意见

氦-氖激光器基本上类似于氖辉光管之类的气体放电二极管,这方面已有相当成熟的生产技术。因此,在抛弃了有机粘合剂而采用全密封结构之后,从零件清洗直至接上真空系统进行排气和充气,都可参照长寿命气体放电管的制造工艺那样严格要求。此外,还应考虑氦-氖激光器本身的特殊工艺要求。目前这方面的文章甚多,这里不再赘述。只是着重提出几点:(1)铝阴极应当在整管组装之前进行良好的氧化处理。无论是在氧气中进行放电氧化,或是采用电化学氧化以及其它方法,都应使电极表面生成具有一定厚度

的均匀细密的氧化膜层,以提高抗溅射能力。 (2)整个激光管都应在烘箱内于真空条件下进行彻底除气,温度一般在325~420℃之间,烘烤时间有时长达20小时。(3)由于激光器中通常使用氦气,在制作新管子的过程中所存在的杂质几乎总被赶到阴极上。利用这种电泳现象,在排气台上另装一辅助阴极,用以进行放电清洗,同时又烘烤管壳,就能容易地把杂质排除出等离子体管。(4)老化处理,它使等离子体管内壁吸饱工作气体,这对减少气体清除效应和稳定管内压强是必不可少的。(5)激光管内装上低活性消气剂,不仅可缩短抽气时间,提高生产率,而且,可在激光器内不断吸收杂质气体,防止工作气体被污染,提高使用寿命。

结 束 语

总的说来,机械的不稳定性、气体清除与 气体污染,温度梯度的敏感性以及其它类似 因素影响激光器的性能、可靠性和使用寿命。 然而,改进的激光器结构设计,不使用有机粘 合剂,大的气体容积,低的阴极电流密度,高 温烘烤,超净真空处理以及低活性消气剂的 采用,这些设计考虑的重要程度虽然还需进 一步深入研究,但是,可以放心地说,前面各 个因素都考虑进去,制造出极长寿命、高稳定 度的氦-氖激光器是完全可能的。

参考文献

- [1] U. E. Hoculi, P. Haldemann, H. A. Li, Rev. Sci. Instr., 45 (1974), 1378.
- [2] R. Turner, K. M. Baird, M. J. Tayor, C. J. Vander Hoeven; Rev. Sci. Instr., 35 (1964), 996
- [3] 三菱电机技报,46卷,第8期(1972).
- [4] U. Hoculi, P. Haldemann; Rev. Sci. Instr., 36 (1965), 1493.
- [5] 法国专利7106263.
- [6] W. P. Kolb; IEEE J., Quant. Electron., QE-11 (1975), 374.