的工作机理,说明了大幅度地提高选频输出功率的可能性。 实验是在典型的封离型 CO_2 激光器中进行的,放电长度为 1.6 米,管径 12 毫米。采用衍射光栅作为谐振腔的一个反射镜进行跃迁选择。 考虑到现有的光栅的效率较低,采用光栅的零级反射作为输出耦合。 谐振腔的另一个反射镜是曲率半径为 8 米的镀金全反射镜,直接密封在放电管的一端,放电管的另一端采用布儒斯特角与管轴垂直的 NaCl 窗密封。 所用的光栅线数分别为 66、80、100 线/毫米,闪耀波长在 10.6 微米,用 2 * 光栅做实验,最强线是[$00^{\circ}1\sim02^{\circ}0$]带的 P 18线,输出功率高达 64 瓦,在 CO_2 [$00^{\circ}1\sim10^{\circ}0$] 带和 [$00^{\circ}1\sim02^{\circ}0$] 带的 P 支和 R 支进行调谐,获得的谱线数目超过 80 条。在 3 * 光栅的情形,最强线位于[$00^{\circ}1\sim02^{\circ}0$]带的 R20 线附近,输出 54 瓦。4 个支的功率分布相当均匀。

关于 CO₂ 激光器的寿命问题

重庆情报分所 青永斌

 CO_2 激光器的寿命受 CO_2 分子离解的影响很大,由于大部分 O_2 和 CO 在阴极表面形成氧化层及氮的氧化物等,使 CO_2 分子浓度降低,以致耗尽,无激光输出。 比较有效的解决办法有如下几种: 一、选用合适的电极,要求它的金属氧化物的离解压力大于 CO_2 的离解压力,溅射率低,溅射物负离子又极少且不消耗氧的金属材料。 满足这些条件最理想的是周期表中第 I 族元素。 实验发现: Ag-CuO 阴极,含银量 95%,含铜量 5%,工作一万二千小时后功率只降低 30%;但在含 N_2 混合气体中,不能用这种电极,只能用 Pt-Cu 合金电极;还有铑-铂合金和铜阴极效果都很好。 二、补充 CO_2 气,在激光管旁加一补充气源的支管。保持碱土金属碳酸盐源一定温度,以维持激光管中 CO_2 分压不变。 另加一钛吸气剂,吸附 CO_2 的离解,从而延长寿命。

双放电 CO₂ 激光器非稳定腔输出及脉冲宽度影响因素的实验研究

中国科学院力学研究所 傅裕寿 王春奎

(2) 控制脉冲宽度 激光与材料相互作用的一个直接结果,就是激光对材料的破坏。 在同样的光学聚焦系统中,不同的脉宽可以形成不同的功率密度,因而引起材料的破坏的物理过程也是极不相同的,因此控制脉冲宽度是十分必要的措施。

在双放电 CO_2 激光器件中,影响脉冲宽度的主要因素是气比和气压,这是因为: (1) 激光上能级的集居数一部分是由于 CO_2 分子直接电子碰撞激励发生,另一部分是靠与处于上能级 N_2 分子碰撞发生共振转移所致,这种碰撞共振转移导致脉冲宽度的加宽。

激光器脉宽随气压增高而减小,这是CO2分子碰撞率随气压增加而增加的一个反映。因为激光泵浦机